TL-Spectrometry and Applications in Biomedical Research and Diagnostics

Mladen Franko University of Nova Gorica

INTERNATIONAL SCHOOL OF QUANTUM ELECTRONICS -57th Course ERICE - SICILY: October 19th -26th, 2016

Molecular energy diagram and related excitation/deexcitation processes

Nonradiative modes of relaxation (C, B)

A, R, F: absorbance, resonant and R A nonresonant fluorescence I, P: intersystem crossing, phoshorescence **C**, **B**: internal conversion. 3 vibrational relaxation

Basics of thermal lens effect

- During non-radiative relaxation of excited species temperature in the sample increases (10⁻⁴ 10⁻³ K)
- a temperature gradient is generated with maximum temperature at the axis of the excitation beam
- the resulting refractive index gradient acts as a lens (mostly: dn/dT < 0, diverging lens)
- laser beam is defocused (single beam or pump/probe configuration)
- beam radius and its intensity at the beam axis changes
- relative change in the beam intensity is proportional to the absorbance of the sample and to the power of the excitation beam.

Nonsteady thermal diffusion

$$\frac{\partial T(r,t)}{\partial t} = D\nabla^2 T(r,t) - v_x \frac{\partial T(r,t)}{\partial x} + \frac{1}{\rho C_p}Q(r,t)$$

- T(r,t)..... temperature
- D......thermal diffusivity
- ρ.... density
- c_p.....heat capacity
- $\dot{\mathbf{Q}}(\mathbf{r},\mathbf{t})$source term ("heat")
- v_xvelocity of the medium in x direction
- By solving nonsteady the thermal diffusion equation, changes in refractive index and related TLS signal can be calculated for different beam geometries and excitation regimes (pulsed, cw)

Pulsed and cw excitation with a Gaussian beam

• Pulsed:

$$Q(r,t) = \frac{2\alpha E_0}{\pi a^2 t_0} \exp\left[-2(x^2 + y^2)/a^2\right]$$

• cw:

$$Q(r,t) = \frac{2\alpha P_{av}}{\pi a^2} \left\{ \exp\left[-2(x^2 + y^2)/a^2\right] \right\} \times (1 + \cos \omega t)$$

 $E_0 \dots$ pulse energy a pump laser beam radius $t_0 \dots$ pulse width $P_{av} \dots$ cw laser average power $\alpha \dots$ absorbance (cm⁻¹) $\omega \dots$ modulation frequency

Thermal lens signal

$$s(t) = \frac{w_2^2(t) - w_2^2(0)}{w_2^2(0)}$$

- $w_2(0)$radius of an unperturbed probe beam at the detector site
- $w_2(t)$time dependent radius of a probe beam perturbed by the thermal lens
- w_0radius of the probe beam at its waist

$$w_{2}^{2}(t) = w_{0}^{2} \left[\left(1 - \frac{z_{2}}{f(t)} \right)^{2} + \frac{1}{z_{0}^{2}} \left(z_{1} + z_{2} - \frac{z_{1}z_{2}}{f(t)} \right)^{2} \right]$$

Simplifications for usual far field experimental configuration

•
$$z_2 >> z_1, z_2 >> z_0 = \pi w_0^2 / \lambda$$

- $f(t) >> z_1, f(t) >> z_0$
- @ t=0, f(0)=∞
 - $-\lambda$ probe beam wavelength
 - $-z_0$confocal distance

$$\mathbf{s}(\mathbf{t}) = -\frac{2\mathbf{z}_1}{\mathbf{f}(\mathbf{t})}$$

Refractive index change and focal distance of thermal lens

$$n(x, y, t) = n_0 + \left(\frac{\partial n}{\partial T}\right)_{T_A} \times T(x, y, t)$$

• n_0 unperturbed refractive index at ambient
temperature T_A

collinear:

transversal:

$$\frac{1}{f} = -\frac{\partial n}{\partial T} \int_{-\infty}^{\infty} \left(\frac{\partial^2 T}{\partial x^2} \right) dy$$

- $\frac{1}{f} = -\frac{\partial n}{\partial T} \left\{ \left(\frac{\partial^2 T}{\partial r^2} \right) \frac{1}{f} \right\}$ • f....thermal lens focal length
- *l*....interaction length

TLS signal for collinear configuration

• Pulsed:
$$(t_0 \rightarrow 0)$$

$$s(t) = -\frac{4AE_0 z_1 (\partial n / \partial T)}{\pi k a^2 t_c} \frac{1}{(1 + 2t / t_c)^2}$$

• cw:

$$s(t) = -\frac{2AP z_1 (\partial n / \partial T)}{\pi k a^2} \frac{1}{(1 + t_c / 2t)}$$

$$- t_c \dots \text{ time constant} = a^2 \rho c_p / 4k = 4a^2 D$$

$$- k \dots \text{ thermal conductivity of the sample}$$

TLS signal for transversal configuration

• Pulsed: $(t_0 \rightarrow 0)$

$$s(t) = -\frac{2\alpha E_0 z_1 (\partial n / \partial T)}{\sqrt{2\pi} kat_c} \frac{1}{(1+2t/t_c)^{3/2}}$$

• cw:
$$s(t) = -\frac{2\alpha P z_1 (\partial n / \partial T)}{\sqrt{2\pi} ka} \frac{1}{(1+t_c / 2t)^{1/2}}$$

TLS signal form

TLS signal in a single beam experiment

- P/a^2 changes with increasing z_1
- the signal maximum is found at $z_1 = z_0$ (parabolic model) $z_0 = \pi a_0^2 / \lambda$

$$s(t) = -\frac{AP(\partial n / \partial T)}{\lambda k} \frac{1}{(1 + t_c / 2t)}$$

or at $z_1 = z_0 \sqrt{3}$ (aberrant model)
$$s(t) = -\frac{AP(\partial n / \partial T)}{\lambda k} \tan^{-1} \left[\frac{1}{(1 + t_c / t)\sqrt{3}} \right]$$

E - Enhancement factor in TLS

$$\frac{\Delta I}{I} = \frac{2.303P(-dn/dT)A}{\lambda k} arctg[1/\sqrt{3}] = 2.303EA$$

Solvent	$-dn/dT (10^4 \text{ K}^{-1})$	$k (W m^{-1} K^{-1})$	$E (10^{-3} \text{ W}^{-1})$
H ₂ O	0.91	0.607	0.12
CCl ₄	5.9	0.103	4.74
acetone	5.42	0.190	2.36

 $E = (-dn/dT) / (1.91 \ \lambda k)$ is calculated for $\lambda = 632.8 \text{ nm}$

Thermo-optical properties of solvents for TLS measurements

Solvent	Thermal conductivity, k mWcm ⁻¹ K ⁻¹	10 ⁴ (dn/dT) K ⁻¹	$-\frac{10^4(dn/dT)}{k}$ cm mW ⁻¹
CO _{2 (SC)}	0.7	-100	143
CCl ₄	1.03	-5.9	5.73
Benzene	1.24	-6.4	5.16
C ₈ MImTf ₂ N	n.d.	n.d.	4.55
cyclohexane	1.24	-5.4	4.35
BMImBF ₄	1.78	-7.54	4.24
n-heptane	1.26	-5.0	3.97
BMImTf ₂ N	1.06	-4.0	3.78
dioxane	1.39	-4.6	3.31
EMImTf ₂ N	n.d.	n.d.	2.37
methanol	2.20	-4.7	2.14
water	6.11	-0.8	0.13

Calc. values (except CO2) taken from Chieu D. Tran and T. A. Van Fleet, Anal. Chem. <u>60</u>, (1988) 2478

TLS - advantages

- High sensitivity
 - signal proportional to excitation laser power
 - absorbances as low as 10⁻⁷ can be measured
- Enables On-line detection
 - fast response of TLS signal (on µs to ms time scale)
- Capability of measuring small samples
 - sub-pL volumes can be probed
 - detection in microfluidic systems

TLS – drawbacks and solutions

- Sensitivity still needs improvement
 - Higher laser power? (photo-labile compounds)
 - Modify solvents
- Limited availability of laser sources
 - Coloring reactions, indirect detection
- Poor selectivity
 - Single wavelength measurements
 - Coupling to separation techniques (HPLC, IC, CE)
- Photodegradation
 - Measure in flowing systems

Dual beam TLS spectrometer for detection in FIA, HPLC and bioassays

Adjustable beam size/position TLM

Temperature dependent TLS signal in

water

23

The effect of photosensitivity on TLS signal (case of Cr-DPC)

HPLC-TLS degtermination of

The role of BTL in the transport of antioxidants across the cellular wall

Improvement of selectivity by separation techniques (HPLC, IC)

LOD: 90 pM LOQ: 250 pM

Martelanc M., Žiberna L., Passamonti S., Franko M.: Anal. Chim. Acta 809, 2014, 174–182.

Free bilirubin in blood serum samples

Simultaneous determination of bilirubin and biliverdin

Mitja Martelanc^a, Lovro Žiberna^b, Sabina Passamonti^b, Mladen Franko^{a,*}

First detection and modulation of bilirubin in vascular endothelial cels

Received: 29 December 2015 Accepted: 14 June 2016

Lovro Ziberna^{3,2}, Mitja Martelanc³, Mladen Franko³ & Sabina Passamonti¹

Advantages of TLS: extremely high sensitivity, small sample capability

(100 – 1000 times lower LOD than SF)

Bioanalytical FIA system

FIA-ELISA-TLS Detection of

Food Allergens

- TLS signal proportional to the amount of allergen retained on the immunocolumn
- Analysis time < 8 min

incubation

cking

Step 4-2° Ab incubation

Ag

Step 3-Ag

incubation

Step 5-Enzyme incubation

Ag

Step 6-Product formation

Determination of BLG and OVA by FIA-ELISA-TLS

LOD for beta-lactoglobulin (BLG) =2.3 pg/ 100 μ L LOD for ovalbumin (OVA) =1 ng/ 100 μ L

(190 pg by ELISA – Bethyl) (1 µg by ELISA – Abcam)

Determination of NGAL a biomarker of acute kidney injury

Thermal Lens Spo

Mladen Franko

Laboratory of Environmenta of Nova Gorica, Nova Gorica

Chieu D. Tran

Department of Chemistry, Milwaukee, WI, USA

1 Introduction

2 Theory

3 Instrumentation

- 3.1 Single-beam Instruments
- 3.2 Dual-beam Instruments
- 3.3 Differential Thermal Lei
- 3.4 Multiwavelength and Tu Lens Spectrometers
- 3.5 Circular Dichroism TLS
- 3.6 Miniaturization of Therr Instruments

Encyclopedia of Analytical Chemist Copyright © 2010 John Wiley & So

PHOTOTHERMAL SPECTROSCOPY METHODS FOR CHEMICAL ANALYSIS

Stephen E. Bialkowski

Volume 134 in Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications

etric Detection in Flow Injection eparation Techniques

den Franko y for Environmental Research, P.O.Box 301, 'a Gorica, Slovenia

w injection analysis, liquid chromatography,

Basic literature on TLS

- S.E. Bialkowski, *Photothermal Spectroscopy Methods for Chemical Analysis*, John Whiley & Sons, Inc., New York, 1996.
- C.D. Tran , M. Franko, "*Thermal Lens Spectroscopy*" in: Encyclopedia of Analytical Chemistry, (Ed. R.A. Meyers), John Wiley: Chichester., 2010. DOI: 9780470027318.
- M. Franko, *"Bioanalytical Applications of TLS"*, in: Thermal wave physics and related photothermal techniques: Basic principles and recent developments, ISBN 978-81-7895-401-1 (Ed. E. Marin), Research Signpost Press, 2009
- M. Franko, Thermal Lens Spectrometric Detection in Flow Injection Analysis and Separation Techniques, *Appl. Spectrosc. Rev.* **43**, 2008, 358-388.

Basic literature on TLS

- Kitamori, T., Tokeshi, M., Hibara, A. and Sato, K., Thermal lens microscopy and microchip chemistry. *Anal. Chem.*, **76**, 2004, 52A-60A.
- M. Franko, C.D. Tran, Analytical Thermal Lens Instrumentation, *Rev. Sci. Instrum.* **67**, 1996, 1-18.
- Liu M., Franko M.: Progress in thermal lens spectrometry and its application in microscale analytical devices, *Crit. Rev. Anal. Chem.* **44**, 2014, 328-353.

Acknowledgements

- Mingqiang Liu
- Tatjana Radovanović
- Ambra Delneri
- Ana Čevdek
- Lea Pogačnik
- Jasmina Kožar-Logar
- Franja Prosenc
- Dr. Mitja Martelanc
- Prof. Dorota Korte
- Prof. Chieu D. Tran
- Prof. Igor Plazl et al.
- Funding: ARRS,
 - Trans2Care, MIZŠ
 - AdFutura

