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Our Goal is: to look below the surface

3 - e " Remote nondestructive optical
| imaging: OCT, THz,
Photoacoustics, Laser —
Ultrasound, Thermography

A _ . Spatial resolution in in the
i _ i micron and mm-range
| =  additional information®: e.g..
Optical and acoustical
anisotropy; detection of
residual stress/strain,
adhesion of interfaces




Image resolution and information
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Outline

= Motivation: Spatial resolution and information content
= High significance of fluctuations for non-destructive imaging (inverse problem)
= Thermography or photoacoustic imaging as an example.
= Temperature or pressure are time dependent random variables: mean
values are described by differential equations, e.g. diffusion or wave
equations.
= Macroscopic systems: fluctuations are small (thermodynamic limit), but for
iInverse problems they get important, because they are highly amplified.
= Stochastic thermodynamics of a “kicked” process
= Good news: information loss (= loss in spatial resolution) due to fluctuations
Is equal to the mean entropy production (= dissipated heat divided by
temperature) - Macroscopic mean value equations describe also influence
of fluctuations
= Physical background of regularization: cut-off e.g. for truncated SVD if no
additional information goes along with those eigenvalues.
= Resolution limits for pulse thermography and thermographic psf




Imaging techniques

X-ray ultrasound light




Laser-generated wave fields

Process of laser-heating:
» Absorption of light
» Heating and thermal diffusion

v=20 ps

|
laser pulse

T(xy/t)




Laser-generated wave fields

Process of laser-heating:
» Absorption of light :>
» Heating and thermal diffusion

Response of the continuum:
» thermal expansion

> generation of elastic waves

laser pulse

T(xy,t)
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uy,t=8.1 ps




Pulsed-
Laser

detected signal
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Laser - Ultrasonics
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Pulsed-
Laser
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PhotoacousticImaging
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Principle of Laser Ultrasonics and Photoac

oustics

Optical absorption of
sample

Acoustic impedance of
sample

contrast

Laser- High absorption, Contrast is determined
Ultrasonics therefore acoustic wave | by the varying acoustic
IS generated at the impedance
sample surface
Photo- Varying absorption Assumed to be constant
acoustics coefficient determines (at least in most

publications)

acoustic
wave
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Invasive laser - induced photoacoustic tomography for
structural and functional in vivo imaging of the brain,” Nature
Biotechnology, vol. 21 , pp. 803-806, 2003
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What is imaged in photoacoustics ?

laser pulse

4

photoacoustic source:

pressure
oC

S absorbed energy density

Light intensity distribution x absorption coeff.




Signal generation

signal at given time t:

integral over surface of sphere
with radius c-t

detector




Image reconstruction

iInversion of spherical
Radon transform

filtered back projection over spheres

detector
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Time reversal reconstruction

X

P. Burgholzer, G. J. Matt, M.
Haltmeier, and G. Paltauf, “Exact and
approximative imaging methods for
photoacoustic tomography using an
arbitrary detection surface,” Physical
Review E 75, 2007
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Photoacoustic imaging with time reversars e
accounting for acoustic attenuation
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» (b), (c) Reconstructions with time reversal 100
without and with compensation of attenuation o
(ill posed: regularization methods necessary) = e T

P. Burgholzer et al., "Compensation of acoustic attenuation for high-resolution
photoacoustic imaging with line detectors using time reversal” Proc. SPIE
6437-75, Photonics West, BIOS 2007




Photoacoustic tomography of a mouse“AEansss

Z (mm)

Infrared laser pulse generates an ultrasonic wave
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Propagated wave
IS measured outside
> Time reversal
reconstruction of
the inner structure of
the heart

Image gets diffuse
for small structures




Non-destructive imaging

Spatial resolution is determined by excitation, propagation, and
detection of a “wave”, which transports the relevant information
to the sample surface: pulse thermography or photoacoustic
Imaging as an example:

= Generation of a thermal or an acoustic wave:
the absorbed light from a flash lamp or a laser
heats the structures inside the sample

= Propagation of “waves” to sample surface:
diffusion or dissipation (from acoustic attenuation)
causes entropy production and a loss of information

= Detection of temperature or acoustic pressure:

noise of infrared camera (e.g. shot noise) or
detector bandwidth and size of pressure detector limits
spatial resolution




Amplitude Reduction and Broadening

reconstructed signal

|

detector :
time




Simple example: heat diffusion in 1D

Diffusion as a
stochastic process:
Mean value
Variance

Correlation

Time reversal of a
stochastic process:
Initial temperature
distribution?




Microscopic picture

= Jime reversal - fundamental laws of physics are still valid, if the direction of
time is changed (¢ = -t): e.g. the movement of an ink particle in the water




Macroscopic picture of diffusion

=  Drop of ink in water




Stochastic realization of heat diffusion 2 %ﬁ
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“Kicked process” evolving back to equitigs
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Forward process: equilibrium state p,, with mean value at x = 0 is kicked at
a time t=0 with magnitude x, to a state py;. far from equilibrium, followed
by a dissipative process back to equilibrium. The arrows indicate the tube of
trajectories, which is “thin” for macroscopic systems, as deviations from the
mean values x(t) are small. With ongoing time the distance of p; from is
reduced, quantitatively described by a decreasing Kullback-Leibler

- divergence D (p||peq)-




Results from Stochastic Thermodynamies é,x.

1
[(®) = kD (pllpeq) = = (H(x(®) = H(x = 0))
~ AS(x(t))
. f(x)
with D(f1lg) = [ InG()f (x)dx

Information about kick magnitude = mean work, which has not
been dissipated yet, divided by the temperature = difference in
mean entropy.

Chernoff-Stein Lemma:

type Il error € = exp(—nD(f||g)) if n data from g are given, for
n large.

= Pt cannot be distinguished from p, If
D (p¢l|peq) <In(1/€)/n




Information loss = Entropy production

Physical background of regularization for ill-posed inverse problems:

= Forward Problem: information loss equal Entropy production

to entropy production s ®
= |[nverse Problem: lost information cannot ¥
be gained any more

= Thermodynamic fluctuations are small
for macroscopic samples, but in solving ill-
posed problems even small fluctuations
are highly amplified and this information
loss cannot be compensated by any
reconstruction algorithm, and causes a
principle resolution limit for reconstructed
images.

Information loss
Fluctuations

Decreased spatial resolution




Fourier space

Mean value equation: linear homogeneous differential equation
for the measured signal g(x, t); "wave” can be represented as
a superposition of wave trains having a certain wavenumber

or frequency in Fourier k—space or w—space, respectively:

(00)

G(k,t) = j g(x, t)exp(ikx)dx

1 00)
g(x,t) = %j G(k,t)exp(—ikx)dk

where i =+—1and k = 21/A.

Thermal diffusion: G(k,t) = G(k,t) exp(—k?at)

After some time t only wave numbers up to a certain cut-off
wave number give additional information. For higher wave

numbers D is to small, so they cannot be distinguished from
Z€ero.




Reconstruction of a
Delta-Pulse in k-space

measured signal G (k, t)

t=0

Reconstructed signal

t >0

Noise level




Thermal diffusion in 1D

Ty (X) i T (Xt

= l I IFT
Time t Fourier space

T.(0) > T,(t) =T, (0)exp(—y,t) with y, =ak? P

Chernoff-Stein Lemma gives for the highest measureable wavenumber k,,;:

exp(a ket’t) = SNR




tSVD and Tikhonov regularization
method In k-space (1)

T(t) = T(0) exp(—yt) with exp(—yt)) = diag (exp(—k?a 1))
tSVD:

fk (0) — {Tk (t) GXp(-l-)/kt) 1 fOf k < F(cut}
0 otherwise

Tikhonov:  min{((T(t) — T(0)exp(—yt))? + AT(0)?}

e

- o exp(=y,t)
=T 0= o e T

L-curve method: A =exp(—2y, t)=1/SNR?

cut

— exp(k’,at) = SNR

cut




tSVD and Tikhonov regularization
method in k-space (2)
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Reconstruction of a Delta-Peak
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Limits of spatial resolution
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v Measurements
mean surface temperaturer




temperature (K)
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Resolution limit as a function of depth
for var. noise levels

resolution as function of depth for various SNRs
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Fluctuation-Dissipation theorem

Wave propagation causes

» Entropy production, which can be calculated
from measured “mean values” (= dissipated
energy / temperature).

» Fluctuation (e.g. thermal noise). Using these |
fluctuation as a “noise” level the \
reconstructed image even with the best
regularization parameter shows a loss of
information (which is equal to the entropy
production).

Fluctuation

Both are related by a well known relation from | | '&‘ ! - -_
Non-equilibrium-thermodynamics: " AT
Fluctuation Dissipation theorem - FDT




Attenuation of 1D “thermal wave”

T (x,t) = Re(T,e'"*Y)
Inserting in diffusion equation :

~ o7’ =—iia)
(04

o= " —@+i) |2
o 2a

with g = ‘/2—“
a

wavenumber k =

A N

1

eXp(—% )= ——

0? 10 .
T(X,t)=——T(X,t) glves:
2 (x,1) o (x,t) g

0 1
depth x / n




Thermographic point-spread-function

In SNR ln SNR
a

cos(0)

kcut —

a=d/cosi{f))




NDTonAIR: PhD position on
“Thermographic Reconstruction”

NDTonAIR

H2020 Marie Sktodowska-Curie European Training Network

The Project Recruitment Events Partners

Univeristy of Perugia

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under
the Marie Sktodowska-Curie grant agreement No 722134

The “NDTonAIR” project (Training Network in Non-Destructive Testing and Structural
Health Monitoring of Aircraft structures) is funded under the action: H2020-MSCA-
ITN-2016- GRANT 722134




Thank you for your attention

The Persistence of Memory (Salvador Dali)
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