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 Remote nondestructive optical 
imaging: OCT, THz, 
Photoacoustics, Laser – 
Ultrasound, Thermography 

 Spatial resolution in in the 
micron and mm-range 

 „additional information“: e.g.. 
Optical and acoustical 
anisotropy; detection of 
residual stress/strain, 
adhesion of interfaces 

Our Goal is: to look below the surface 



Image resolution and information 
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Outline 

 Motivation: Spatial resolution and information content 
 High significance of fluctuations for non-destructive imaging (inverse problem) 

 Thermography or photoacoustic imaging as an example. 
 Temperature or pressure are time dependent random variables: mean 

values are described by differential equations, e.g. diffusion or wave 
equations. 

 Macroscopic systems: fluctuations are small (thermodynamic limit), but for 
inverse problems they get important, because they are highly amplified. 

 Stochastic thermodynamics of a “kicked” process 
 Good news: information loss (= loss in spatial resolution) due to fluctuations 

is equal to the mean entropy production (= dissipated heat divided by 
temperature)  Macroscopic mean value equations describe also influence 
of fluctuations 

 Physical background of regularization: cut-off e.g. for truncated SVD if no 
additional information goes along with those eigenvalues. 
 Resolution limits for pulse thermography and thermographic psf 



X-ray ultrasound light 

Imaging techniques 



Laser-generated wave fields 

Process of laser-heating: 
 Absorption of light 
 Heating and thermal diffusion 

T(x,y,t) 



Laser-generated wave fields 

Process of laser-heating: 
 Absorption of light 
 Heating and thermal diffusion 

Response of the continuum: 
 thermal expansion 
 generation of elastic waves 

uy(x,y,t) T(x,y,t) 













Principle of Laser Ultrasonics and Photoacoustics 

Incident light 

sample 

acoustic 
wave 

Optical absorption of 
sample 

Acoustic impedance of 
sample 

Laser-
Ultrasonics 

High absorption, 
therefore acoustic wave 
is generated at the 
sample surface 

Contrast is determined 
by the varying acoustic 
impedance 

Photo-
acoustics 

Varying absorption 
coefficient determines 
contrast 

Assumed to be constant 
(at least in most 
publications) 



X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. Wang, “Non-
invasive laser – induced photoacoustic tomography for 
structural and functional in vivo imaging of the brain,” Nature 
Biotechnology, vol. 21 , pp. 803-806, 2003  



What is imaged in photoacoustics ? 

photoacoustic source: 
 

pressure  
∝  

absorbed energy density 
= 

Light intensity distribution x absorption coeff. 

laser pulse 



Signal generation 

detector 

c·t 

signal at given time t: 
 

integral over surface of sphere 
with radius c·t 



Image reconstruction 

detector 

c·t 

inversion of spherical  
Radon transform 

 
filtered back projection over spheres 

 



Integrating line detectors 



Set-up 



Time reversal reconstruction 

P. Burgholzer, G. J. Matt, M. 
Haltmeier, and G. Paltauf, “Exact and 
approximative imaging methods for 
photoacoustic tomography using an 
arbitrary detection surface,” Physical 
Review E 75, 2007 
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Photoacoustic imaging with time reversal 
accounting for acoustic attenuation  

 (a) Pressure simulation results for τ = 0.8 
and c=1  

P. Burgholzer et al., ”Compensation of acoustic attenuation for high-resolution 
photoacoustic imaging with line detectors using time reversal” Proc. SPIE 
6437-75, Photonics West, BIOS 2007 

Stokes equation 
Relaxation time τ 
Δ…Laplace operator 

 
 (b), (c) Reconstructions with time reversal 

without and with compensation of attenuation 
(ill posed: regularization methods necessary) 



Photoacoustic tomography of a mouse heart 

 Infrared laser pulse  generates an ultrasonic wave 

 Propagated wave  
is measured outside 
 Time reversal 
reconstruction of 
the inner structure of 
the heart 

  Image gets diffuse 
for small structures 



Non-destructive imaging 

detector 

 Generation of a thermal or an acoustic wave: 
the absorbed light from a flash lamp or a laser 
heats the structures inside the sample 

 Propagation of “waves” to sample surface: 
diffusion or dissipation (from acoustic attenuation) 
causes entropy production and a loss of information 

 Detection of temperature or acoustic pressure: 
noise of infrared camera (e.g. shot noise) or 
bandwidth and size of pressure detector limits 
spatial resolution 

 

Spatial resolution is determined by excitation, propagation, and 
detection of a “wave”, which transports the relevant information 
to the sample surface: pulse thermography or photoacoustic 
imaging as an example: 



Amplitude Reduction and Broadening  

detector 

reconstructed signal 

time 



Simple example: heat diffusion in 1D 

Diffusion as a 
stochastic process: 
Mean value 
Variance 
Correlation 
 
Time reversal of a 
stochastic process: 
Initial temperature 
distribution? 



Microscopic picture 

 Time reversal - fundamental laws of physics are still valid, if the direction of 
time is changed (t  -t ): e.g. the movement of an ink particle in the water 



Macroscopic picture of diffusion 

 Drop of ink in water 



Stochastic realization of heat diffusion 
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“Kicked process” evolving back to equilibrium 

Forward process: equilibrium state 𝑝𝑝𝑒𝑒𝑒𝑒 with mean value at 𝑥𝑥 = 0 is kicked at 
a time t=0 with magnitude 𝑥𝑥0 to a state 𝑝𝑝𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 far from equilibrium, followed 
by a dissipative process back to equilibrium. The arrows indicate the tube of 
trajectories, which is “thin” for macroscopic systems, as deviations from the 
mean values 𝑥𝑥(𝑡𝑡) are small. With ongoing time the distance of 𝑝𝑝𝑡𝑡 from is 
reduced, quantitatively described by a decreasing Kullback-Leibler 
divergence 𝐷𝐷(𝑝𝑝𝑡𝑡||𝑝𝑝𝑒𝑒𝑒𝑒).  
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t>0 

𝑥𝑥 

  

  

t  ∞ 

𝑥𝑥 

  𝑝𝑝𝑒𝑒𝑒𝑒 

    

𝑥𝑥(𝑡𝑡) 

𝑝𝑝𝑡𝑡 



Results from Stochastic Thermodynamics 

Information about kick magnitude = mean work, which has not 
been dissipated yet, divided by the temperature = difference in 
mean entropy. 
Chernoff-Stein Lemma:  
type II error 𝜀𝜀 = exp(−𝑛𝑛𝑛𝑛(𝑓𝑓||𝑔𝑔)) if  n data from 𝑔𝑔 are given, for 
n large. 
 𝑝𝑝𝑡𝑡 cannot be distinguished from 𝑝𝑝𝑒𝑒𝑒𝑒 if  

𝐷𝐷(𝑝𝑝𝑡𝑡| 𝑝𝑝𝑒𝑒𝑒𝑒 < ln (1/𝜀𝜀)/𝑛𝑛 

𝐼𝐼 𝑡𝑡 = 𝑘𝑘𝐵𝐵𝐷𝐷(𝑝𝑝𝑡𝑡||𝑝𝑝𝑒𝑒𝑒𝑒) ≈
1
𝑇𝑇 𝐻𝐻 𝑥𝑥 𝑡𝑡 − 𝐻𝐻 𝑥𝑥 = 0  

             ≈ ∆𝑆𝑆 𝑥𝑥 𝑡𝑡  
 with 𝐷𝐷(𝑓𝑓| 𝑔𝑔 ≔ ∫ ln (𝑓𝑓 𝑥𝑥

𝑔𝑔 𝑥𝑥
)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 



Entropy production 

Decreased spatial resolution 

Fl
uc

tu
at

io
ns

 

In
fo

rm
at

io
n 

lo
ss

 

Information loss = Entropy production 

  
  
      

  

  

  

Physical background of regularization for ill-posed inverse problems: 

 Forward Problem: information loss equal 
to entropy production 
 Inverse Problem: lost information cannot 
be gained any more 
 Thermodynamic fluctuations are small 
for macroscopic samples, but in solving ill-
posed problems even small fluctuations 
are highly amplified and this information 
loss cannot be compensated by any 
reconstruction algorithm, and causes a 
principle resolution limit for reconstructed 
images. 



Fourier space 

Mean value equation: linear homogeneous differential equation 
for the measured signal 𝑔𝑔 𝑥𝑥, 𝑡𝑡 ; "wave” can be represented as 
a superposition of wave trains having a certain wavenumber 
or frequency in Fourier k−space or 𝜔𝜔−space, respectively: 

𝐺𝐺 𝑘𝑘, 𝑡𝑡 = � 𝑔𝑔(𝑥𝑥, 𝑡𝑡)𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑
∞

−∞
 

𝑔𝑔(𝑥𝑥, 𝑡𝑡) =
1
2𝜋𝜋

� 𝐺𝐺 𝑘𝑘, 𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒 −𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑
∞

−∞
 

where 𝑖𝑖 = −1 and 𝑘𝑘 = 2𝜋𝜋/𝜆𝜆. 
𝐺𝐺 𝑘𝑘, 𝑡𝑡 = 𝐺𝐺 𝑘𝑘, 𝑡𝑡  𝑒𝑒𝑒𝑒𝑒𝑒 −𝑘𝑘2𝛼𝛼𝑡𝑡  Thermal diffusion: 

After some time t only wave numbers up to a certain cut-off 
wave number give additional information. For higher wave 
numbers D is to small, so they cannot be distinguished from 
zero. 



Reconstruction of  a  
Delta-Pulse in k-space 

measured signal 𝐺𝐺 𝑘𝑘, 𝑡𝑡  

k 

t=0 

Noise level 

t >0 

Reconstructed signal 

𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) 



Thermal diffusion in 1D 

Fourier space 
“k-space” 
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Chernoff-Stein Lemma gives for the highest measureable wavenumber 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐: 
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tSVD and Tikhonov regularization 
method in k-space (1) 
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tSVD and Tikhonov regularization 
method in k-space (2) 
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Reconstruction of a Delta-Peak 



Limits of spatial resolution 
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Reconstruction
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Measurements
mean surface temperature

Measured surface temperature 



Reconstruction of initial temperature profile 
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initial temperature
Tikhonov reconstruction
ω-reconstruction



Resolution limit as a function of depth  
for var. noise levels 
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Wave propagation causes 
 Entropy production, which can be calculated 

from measured “mean values” (= dissipated 
energy / temperature). 

 Fluctuation (e.g. thermal noise). Using these 
fluctuation as a “noise” level the 
reconstructed image even with the best 
regularization parameter shows a loss of 
information (which is equal to the entropy 
production). 
 

Both are related by a well known relation from 
Non-equilibrium-thermodynamics:   

Fluctuation Dissipation theorem - FDT 
 

Dissipation 

Fluctuation 

Fluctuation-Dissipation theorem 



Attenuation of 1D “thermal wave” 
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Thermographic point-spread-function (2D) 

θ 
d 
 

a= d/cos⁡(θ) 
 

𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐  = ln 𝑆𝑆𝑆𝑆𝑆𝑆
𝑎𝑎

 = ln 𝑆𝑆𝑆𝑆𝑆𝑆
𝑑𝑑

 cos (𝜃𝜃) 



NDTonAIR: PhD position on  
“Thermographic Reconstruction” 



Thank you for your attention 

The Persistence of Memory (Salvador Dali) 
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