## USING COSMOLOGICAL SIMULATIONS AS A LABORATORY FOR THE PHYSICS OF AGN

### Lisa K. Steinborn

in collaboration with Klaus Dolag, Michaela Hirschmann, M. Almudena Prieto, Rhea-Silvia Remus, Julia M. Comerford, Adelheid F. Teklu, Mirko Krumpe





### MAGNETICUM PATHFINDER SIMULATIONS

#### Our simulations include:

- thermal conduction (Dolag et al., 2004)
- star formation
- chemical enrichment
- supernova feedback (Tornatore et al. 2007)
- metals
- sixth-order Wendland kernel (Dehnen & Aly 2012)
- low viscosity SPH scheme
- magnetic fields (passive)
- BH growth and AGN feedback

### What makes the BHs in our simulations special?

We do not force BHs to stay in the center of galaxies!

#### www.magneticum.org

Hirschmann+14, Steinborn+15, Teklu+15, Bocquet+15, Dolag +15, Steinborn+16, Remus+16

## BH model





Hirschmann+14

## BHs

AGN clustering

### No pinning to the potential minimum!

BHs do <u>not</u> merge as long as:

- the relative velocity of the BHs to each other is > 0.5\*sound speed,
- the distance is > 5\*softening length and the BHs are not gravitationally bound to each other.



### dual/offset AGN



The HOD slope is smaller than for galaxies (1.15)!

## AGN are not just random events!

There must be certain conditions which increase the probability for AGN activity!





# What do we need to produce dual/offset AGN?

- high resolution -> uhr (down to 2 kpc)
  large volume (only 1% of all AGN!)
  no pinning!
- -> Box3/uhr of the Magneticum Simulations (ran down to z=2)

10 Mpc/h

128Mpc/h 1 ultra-high resolution

14903 BHs 1864 AGN

9 dual AGN 14 offset AGN 11 dual BHs without AGN

50 kpc/h

## What is an AGN?

#### X-ray cavities in Abell 2052





Prieto et al. (2014)



McHardy et al. (2004)

#### Centaurus A







NRAD RADIO CONTINUUM NRAD RADID (21-CM)



Urry & Padovani (1995)



http://chandra.harvard.edu



Prieto et al. (2014)

http://chandra.harvard.edu



ACCRETION

Bondi model: 
$$\dot{M}_{\rm B} = rac{4\pi G^2 M_{ullet}^2 
ho_{\infty}}{(v^2 + c_{
m s}^2)^{3/2}}$$

- Assumptions: isothermal, isotropic sphere
- No difference between hot and cold gas

### This does not work!

Commonly used in simulations:

$$\dot{M}_{\rm B} = \frac{4\pi\alpha G^2 M_{\bullet}^2 \langle \rho \rangle}{(\langle c_{\rm s} \rangle^2 + \langle v \rangle^2)^{3/2}}$$

Two reasons for the boost factor:

- Resolution
- · Cold gas is not Bondi-like

New approach: hot vs. cold gas accretion

$$\alpha = 10 \qquad \alpha = 100$$

$$\dot{M} = \min(\dot{M}_{B,hot} + \dot{M}_{B,cold}, \dot{M}_{Edd})$$



# COMPARISON WITH OBSERVATIONS



#### Steinborn+15

# HOW DOESTHE NEW MODEL INFLUENCE STAR FORMATION?





Steinborn+15

# SUMMARY

Largest scales: AGN are not distributed randomly!

There are trigger mechanisms! Steinborn+16

Smallest scales:

dual & offset AGN

D. Hendern 15

Larger volumes and higher resolutions require a more detailed BH model!

### Steinborn+15

- two gas phases,
- two different ways of AGN feedback: radiation and outflow,
- a smooth transition between radio and quasar mode and
- a radiative efficiency, which depends on the BH mass.

### We could improve ...

- the relation between BH mass and stellar mass
- the black hole mass function
- the amount of quiescent galaxies

**Poster 18:** effect on SZ-properties of galaxy clusters

www.magneticum.org