A new route towards merging massive black holes

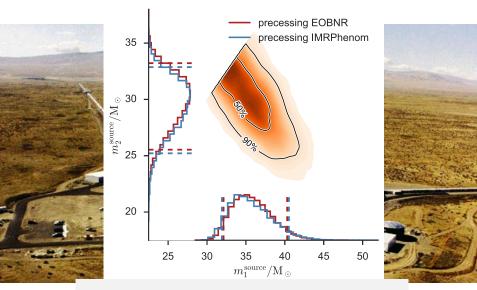
Pablo Marchant¹, Norbert Langer¹, Philipp Podsiadlowski^{2,1}, Thomas Tauris^{1,3}, Takashi Moriya¹, Lise de Buisson², Selma de Mink⁴ and Ilya Mandel⁵

¹Argelander Institut für Astronomie, Universität Bonn

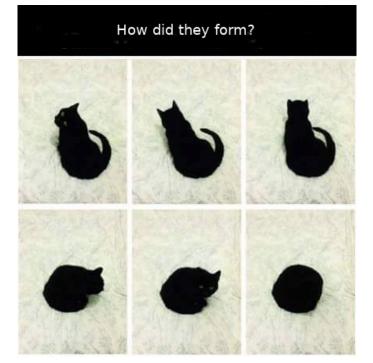
²Department of Astrophysics, University of Oxford

³Max-Planck-Institut für Radioastronomie

⁴Anton Pannekoek Institute for Astronomy, Amsterdam University

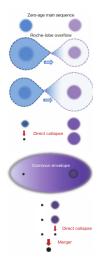

⁵School of Physics and Astronomy, University of Birmingham

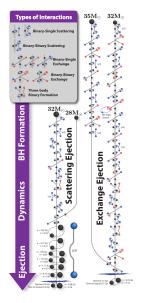
September 15, 2016, Ljubljana



First science run of advanced LIGO detected 2.5 merging BHs! Abbott+ 2016 astro-ph/1606.04856

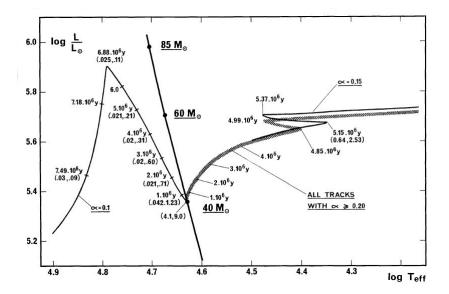
GW150914, Abbott+ 2016 , astro-ph/1606.01210

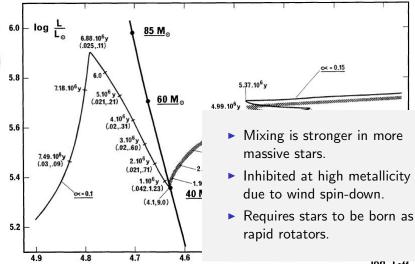



How did they form?

Massive stars can grow beyond $1000R_{\odot}$

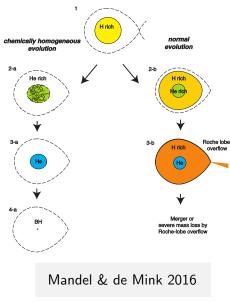
But to merge within a Hubble time, binary black holes must be at separations well below $100R_{\odot}$




Field, Belczynski et al. (2016) astro-ph/1602.04531

Cluster, Rodriguez et al. (2016) astro-ph/1604.04254

Chemically homogeneous evolution (Maeder 1987)

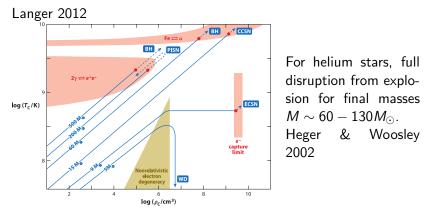


Chemically homogeneous evolution (Maeder 1987)

IOG Leff

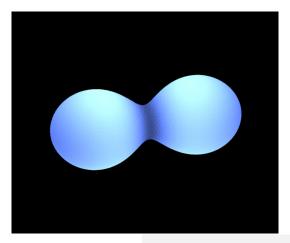
Tidal locking in close binaries as a source of rapid rotation

- Possibility of double-BH formation.
- Königsberger et al. 2014: Double He star system in the SMC

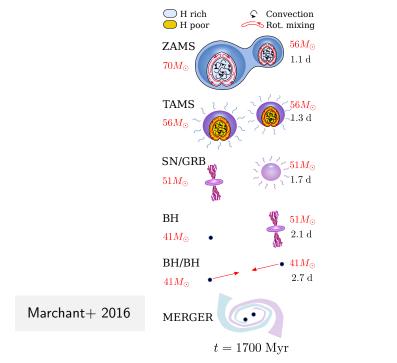

•
$$M_1 = 66 M_{\odot}$$
,
 $M_2 = 61 M_{\odot}$

Song+ 2016

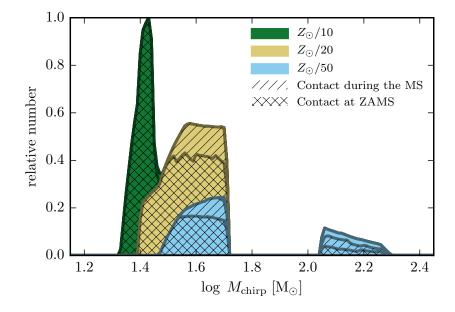
de Mink & Mandel 2016

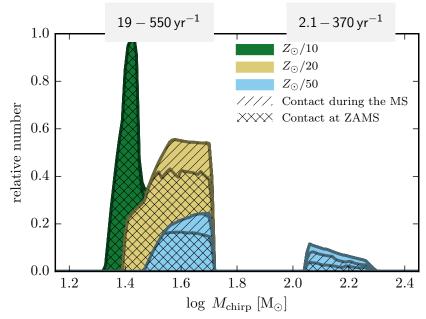

Marchant+ 2016

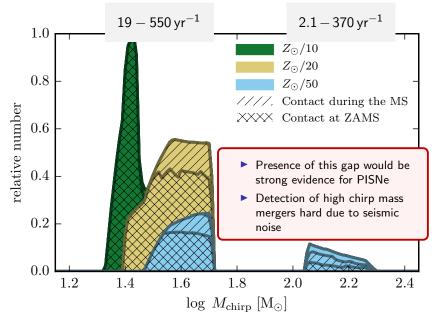
Pair-instability supernovae, LGRBs



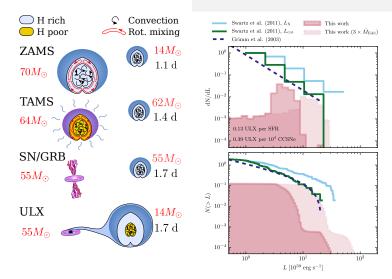
 Additionally, formation of high spin BH+accretion disk can result in LGRBs (Woosley 1993, Yoon & Langer 2005) Almeida et al. 2015: Massive overcontact binary


 $M_1 \simeq M_2 \simeq 30 M_{\odot}$, $q = M_1/M_2 = 1.008$, $P_{\rm orb} = 1.12$ [d]


VFTS 352, most massive overcontact binary known.

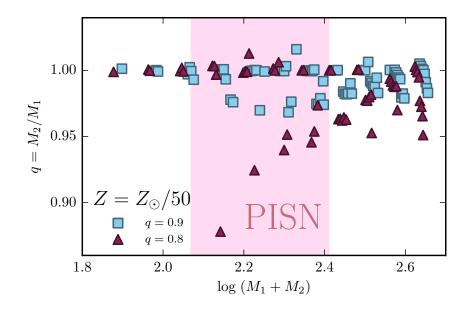

Chirp mass distribution

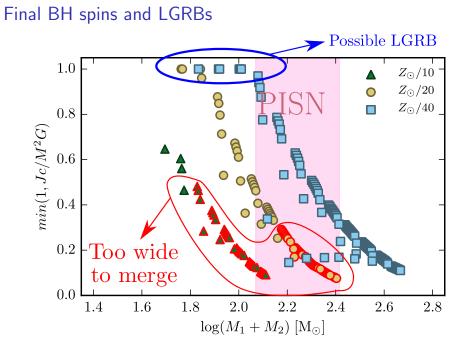
Chirp mass distribution



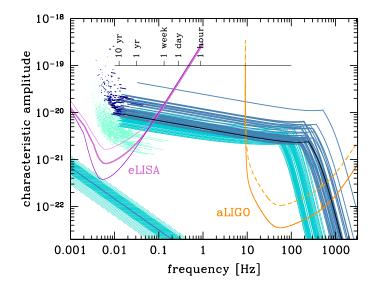
Chirp mass distribution

Formation of ULXs


Marchant+, in preparation



Conclusions


- Chemically homogeneous evolution in very massive binaries provides a common channel for LGRBs, PISNe, ULXs and merging double BHs.
- Consistent with the masses measured for GW150914, but low observed spin could be an issue.
- Detection of a gap in measured chirp masses of merging BHs could provide strong evidence por PISNe (and also on PPISNe).
- At low metallicity, BHs with high spin could be produced resulting in LGRBs through the collapsar model.
- Synchronization of the binary components can result in both stars ending their lives within a timescale of a few 100 yrs.
- ► Future observations by aLIGO and other facilities will provide strong constraints on this model. If seismic noise remains too high to detect M_{chirp} > 100M_☉, might need to wait for eLISA, ET.

Mass ratios

Sesana 2016

Back-of-the-envelope rate estimates

$$R_{MWEG} = R_{SNe} \times f_{binary} \times f_P \times f_q \times f_{IMF} \times f_Z$$

•
$$R_{SNe} \sim 10^{-2} \ yr^{-1}$$

- $f_{\rm binary} \sim 1/3$
- *f*_P ∼ 0.05
- ► *f_q* ~ 0.2
- $f_{\rm IMF} \sim 0.05 0.01$ (above and below PISN gap)
- $f_Z \sim 0.1$

$$R_{MWEG} \sim 2 \times 10^{-7} \ [{
m yr}^{-1}]; 3 \times 10^{-8} \ [{
m yr}^{-1}]$$

aLIGO detection rates

Abadie et al. 2010:

$$N_{\rm gal} = rac{4}{3} \pi \, \left(rac{d_{
m horizon}(M_{
m chirp})}{
m Mpc}
ight)^3 \, (2.26)^{-3} \, (0.0116)$$

- $d_{\text{horizon}}(M_{\text{chirp}})$: distance limit for detection ($\propto M_{chirp}^{15/6}$).
- (2.26)⁻³: averaging due to relative inclinations and sky positions.
- ► 0.0116 Mpc⁻³: Extrapolated density of MWEGs (Kopparapu et al. 2008)

For a massive BH-BH merger with $M_{\rm BH}=60~M_{\odot}$ (or 130 M_{\odot}), we get $d_{\rm horizon}\simeq 10~{
m Gpc}$ (or $d_{\rm horizon}\simeq 19~{
m Gpc}$)

aLIGO detection rates

Ζ	$Z_{\odot}/50$	$Z_{\odot}/20$	$Z_{\odot}/10$	$Z_{\odot}/4$
$dBH/SN < PISN (10^{-3})$	0.67	1.3	0.34	0
$dBH/SN > PISN (10^{-3})$	0.27	0	0	0
LIGO rate $[yr^{-1}] < PISN$	3539	5151	501	0
LIGO rate $[yr^{-1}] > PISN$	5431	0	0	0

Table: Fraction of systems per SN that result in double BHs that would merge in less than $13.8 \, \mathrm{Gyr}$ (upper 2 rows), and aLIGO detection rates (lower 2 rows), assuming that all galaxies have the corresponding metallicity, both above and below the PISN gap.

Rate Estimates: $19 - 550 \text{ yr}^{-1}$ for BH-BH mergers below the PISN gap and of $2.1 - 370 \text{ yr}^{-1}$ above the PISN gap.

Königsberger et al. 2014, HD5980

Element	N v 49	System A+B	
	Star A	Star B	
$\overline{M\sin^3 i(M_{\odot})}$	61 (10)	66 (10)	127 (14)
$a \sin i (R_{\odot})$	78 (3)	73 (3)	151 (4)
$K (\mathrm{km s^{-1}})$	214 (6)	200 (6)	
e			0.27 (0.02)
ω_{per} (deg)			134 (4)
$V_0 ({\rm km \ s^{-1}})$		•••	131 (3)
P _{calc} (days)			19.2656 (0.0009

$P_{\rm C}/P_{\rm A+B}$	=	5.0089
-------------------------	---	--------

Orbital Solution for Star C				
Element	Current Analysis	Schweickhardt (2000)		
P _C (days)	96.56 (0.01)	96.5		
Tperi (HJD)	2451183.40 (0.22)	2451183.3		
e	0.815 (0.020)	0.82		
ω (deg)	252 (3.3)	248		
$K ({\rm km}{\rm s}^{-1})$	81 (4)	76		

Table 7