Very Bright Prompt and Reverse Shock Emission of GRB 140512A

Xiaoli Huang1, Liping Xin2, Shuangxi Yi3, Shuqing Zhong1, Yulei Qiu2, Jingsong Deng2, Jianyan Wei2, Enwei Liang1,2
1Guangxi Key Laboratory for the Relativistic Astrophysics, Guangxi University, Nanning 530004, China; lew@gxu.edu.cn
2Key Laboratory of Space Astronomy and Technology, NAOC, Beijing 100012, China; xjp@nao.cas.cn
3College of Physics and Engineering, Qufu Normal University, Qufu 273165, China.

Summary
We report our observations of very bright prompt optical and reverse shock optical emission of GRB 140512A and analyze its multi-wavelength data by using our data together with data observed with the swift and fermi missions. It is found that the joint optical-X-ray-gamma-ray spectrum with our first optical detection (R=13.09 mag) at T0 + 136 seconds during the second episode of the prompt gamma-ray may be prompt optical emission. Both empirical and theoretically models fits to the afterglow lightcurves indicate that the observed bright optical afterglows with R=13.00 mag at the peak time is consistent with predictions of the reverse shock and forward shock emission of external shock models.

Introduction
Prompt optical and reverse shock optical emission are essential for revealing the jet radiation physics, composition, environment, and the properties of the central engine of the gamma-ray burst phenomenon, they were clearly detected only in a few GRBs (Melandri et al. 2008; Gomboc et al. 2009; Oates et al. 2009; Zhang et al. 2003; Gao et al. 2015). We report our observations of very bright prompt optical and reverse shock optical emission of GRB 140512A, and analyze its multi-wavelength data to study the jet properties of this GRB. The details of our analysis refer to Huang et al. (2016).

Data analysis
The multi-wavelength lightcurves of GRB 140512A and our empirical fits are shown in Figure 1. The first optical data point may be contributed to the prompt optical emission. The temporal features of the early optical lightcurve is well consistent with the prediction of the reverse and forward shock emission models. Interestingly, the X-ray afterglow lightcurve can be also fit with the same model. With simultaneous multi-wavelength data, we extract the joint spectra in four selection slices as marked in Figure 1. We found that these spectra can be well fit with an absorbed single power-law function by considering both the optical extinction and neutral hydrogen absorption from Galaxy and the GRB host galaxies.

Data analysis

Theoretically Modeling the Afterglow Lightcurves
We present theoretical fits to the optical and X-ray afterglow lightcurves with the reverse shock and forward shock emission models. With a Markov Chain Monte Carlo algorithm we find that the following model parameter set can well represent the data,

\[E_{\text{kev}} = (7.65 \pm 0.18) \times 10^{54} \text{erg} \]
\[n = (9.7 \pm 0.4) \times 10^{-7} \text{ cm}^{-3} \]
\[\theta = (0.03 \pm 0.007) \text{ rad} \]
\[c_{\text{es}} = 0.29 \pm 0.08 \]
\[c_{\text{ef}} = 0.006 \pm 0.002 \]
\[\epsilon_{\text{Bf}} = (1.82 \pm 0.84) \times 10^{-5} \]
\[\epsilon_{\text{Bf}} = (1.49 \pm 0.06) \times 10^{-4} \]

We find a high magnetization degree in the reverse shock region with \(R_{\text{B}} \equiv c_{\text{Bf}}/c_{\text{Bf}} \approx 8187 \) and a relative low radiation efficiency with \(R_{\text{e}} \equiv c_{\text{es}}/c_{\text{ef}} \approx 0.02 \). Clear reverse shock emission is also observed in GRBs 990123, 090102, and 130427A. We also fit their early optical afterglow lightcurves with the same model by keeping \(c_{\text{es}} \) and \(c_{\text{ef}} \) the same as that derived from GRB 140512A and varying the parameters of \(E_{\text{kiso}} \), \(n \), \(p \), and \(\Gamma_0 \), showing that the \(R_{\text{B}} \) of GRBs 990123, 090102, and 130427A are similar to that of GRB 140512A and their apparent difference may be mainly attributed to the difference of the jet kinetic energy, initial Lorentz factor, and medium density among them.

Fig. 3.—Left panel—Theoretically fits (solid lines) to the optical and X-ray afterglow lightcurves with external shock models by considering emission from both reverse (dashed lines) and forward shocks (dot-dashed lines). Right panel—Comparison of the GRB140512A afterglow lightcurves with GRBs 990123, 090102, and 130427A.

Reference