Search for High Energy emission from GRBs with MAGIC

Alessio Berti for the MAGIC GRB group University & INFN Trieste IAU Symposium 2016 2016/09/12

1 MAGIC telescopes and GRBs follow-up

2 High Energy and Very High Energy emission from GRBs

3 Late time observations of GRBs with MAGIC

MAGIC: a good IACT for catching GRBs

- ☑ Two telescopes of 17 m of diameter located in La Palma, Canary Islands
- \subseteq FoV of each telescope: 3.5°
- \leq Energy threshold: \sim 50 GeV at zenith, trigger level
- Sensitivity: less than 0.7% Crab above 220 GeV in 50 h
- S Sast repositioning time for catching up GRBs: 7°/s
- **GRBs** are top priority for MAGIC! **GRBs** are top priority for MAGIC!

MAGIC GRB follow-up

- ☑ Alert system linked with GRB Coordinate network
- ☑ New automatic procedure since 2013
- Fast repositioning if observational constraints are met
- \subseteq Up to 4h of observation after the prompt emission

- ≤ Since 2005, 83 (good) GRBs observed, 37 of them with known redshift
- S After new automatic procedure, 19 (good) GRBs observed, 10 of them with redshift information

GRBs: what we do not fully understand?

- \blacksquare Prompt and early afterglow
- Semission processes ≤
- ☑ Mechanism of jet formation and dissipation
- ✓ Jet composition
- Section Se
- Section Se
- \subseteq Can we probe EBL with GRBs?

☑ High Energy (HE) and Very High Energy (VHE) emission → this talk ☑ ...

HE emission from GRBs

Most of the information about HE emission by GRBs comes from *Fermi* satellite (LAT+GBM)

- $\trianglelefteq\,$ GBM rate: $\sim 250\,{\rm yr^{-1}};$ $\sim 4-5\%$ detected also by LAT at $E>100\,{\rm MeV}$
- ${
 m sigma} \sim$ half of LAT detected GRBs has $> 1\,{
 m GeV}$ photons (rate: $\sim 5\,{
 m yr}^{-1}$)
- ☑ Highest energy photon from GRB130427: 94 GeV
- $extsf{S}$ HE emission extended in time
- ☑ HE emission is delayed
- \subseteq GeV emission decays as t^{-1} (at least for late times)

High Energy and Very High Energy emission from GRBs

HE/VHE emission models

Synchrotron in external forward-shock

Self-synchrotron Compton in external shock

- SSC and synchrotron models for the afterglow can have leptonic (see also Zhang & Meszaros 2001) or hadronic origin (see Böttcher & Dermer 1998; Pe'er & Waxman 2005)
- Other models propose upscattering of prompt γ-rays by electrons (see Meszaros & Rees 1994; Belobodorov 2005; Fan et al. 2005), upscattering of CMB photons (see Plaga 1995) or Compton up-scattered photospheric emission ((see Toma et al. 2011))

Alessio Berti

High Energy and Very High Energy emission from GRBs

MAGIC observation example: GRB090102

- ☑ Detected by Swift BAT, then by Fermi GBM, Konus Wind and Integral → good reconstruction of the prompt spectral parameters
- **⊆** Long burst: $T_{90} = (27 \pm 2)$ s
- \subseteq Redshift: z = 1.547
- \le Optical flux: broken power law $\alpha_1 = 1.50 \pm 0.06$ $\alpha_2 = 0.97 \pm 0.03$
- \leq MAGIC observations from $T_0 + 1161$ s in mono mode
- 🛿 Zenith range: 5°-52°
- \Box T_{obs} = 13149 s (only the first 5919 s used)
- \leq Sum trigger used: $E_{\rm thr} \sim 30 \, {
 m GeV}$
- Sontemporaneous observation with Fermi-LAT

Aleksic et al. (2014)

High Energy and Very High Energy emission from GRBs

Late time observations of GRBs with MAGIC

GRB090102: UL on HE/VHE emission

- Prompt emission from internal shocks and afterglow from external shocks
- \triangleleft SSC (leptonic version) mechanism with relevant parameters ν_m and ν_c
- Solution Model Strongly dependent on GRB environment: outburst medium density n, energy equipartition parameters ϵ_e and ϵ_b , Compton parameter Y_e

 \checkmark Leptonic vs hadronic component

Alessio Berti

Late time observations

- Many LAT detected GRBs show late time (delayed) emission in the (early) afterglow phase
- ✓ MAGIC is changing its GRB observation strategy to include this kind of observations, observing events after ~1 day

GRB130427A: Ackermann et al. 2014

Late time observations: GRB160310A and GRB160509A

GRB160310A

- T₀: 2016/03/10 00:22:42 UT
- T_{start} : 2016/03/10 20:30:16 UT
- Duration: 1h on on 2016/03/10-11-13
- Delay: \sim 20 hours
- Zenith range: 35°-37°

GRB160509A (3rd on-board trigger fo LAT)

- T₀: 2016/05/09 08:59:04 UT
- T_{start} : 2016/05/11 21:21:07 UT
- Duration: 3h (2016/05/11), 4.5h (2016/05/12)
- Delay: \sim 2.5 days
- Zenith range: 60°-72°

Upper limits: what for? Some examples

- Distinction between different HE/VHE models
- Direct upper limits on SSC emission if it dominates over synchrotron component (see Beniamini et al. 2015)
- Lower limits on IGMF from upper limits on the pair echo emission (see Takahashi et al 2008)

Prospects for GRB observation and HE emission

Aleksic et al. (2014)

For MAGIC:

- S Cross-check and UL of past years GRBs (2013-now) ⇒ my past/current work
- S ≤ Low-energy optimized analysis
- \trianglelefteq Use of the sum trigger in stereo mode for GRBs
- ✓ More luck! (less distant GRBs, good weather)
- S A paper in preparation with the good observed GRBs since 2013

For the future:

- CTA (Cherenkov Telescope Array) will have a sensitivity higher than current IACTs
- Substitution Solution Solution Solution Solution Solution
 Substitution

Summary

MAGIC is a good IACT for catching GRBs (low energy threshold, fast repositioning) and observing their HE/VHE emission

HE/VHE emission from GRBs is very useful for several reasons:

- ☑ put constraints (also UL are useful!) on emission mechanisms
- discriminate between leptonic and hadronic scenarios
- \subseteq discriminate between different EBL models

Multi-wavelength observations help in constraining the parameters of the emission models

THANK YOU FOR YOUR ATTENTION! QUESTIONS?