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Blandford	&	Znajek	(1977)	

•  Slowly	rota,ng	Kerr	
space-,me	

	
•  Steady,	axisymmetric	
•  Split-monopole	B	field	
•  Force-free	
approxima,on	
(Electromagne,cally	
dominated)	

a =
J

Mrgc
⌧ 1

E

Jp Sp =
E⇥H'

4⇡

(see	also	Beskin	&	Zheltoukhov	2013)	

Jp k Bp E ? B



BZ	process	with	large	BH	spin	a	

436 S. S. Komissarov

ϖ
0.0 2.0 4.0

-4.0

-2.0

 0.0

 2.0

 4.0

z

ϖ
0.0 2.0 4.0

-4.0

-2.0

 0.0

 2.0

 4.0

z

Figure 3. Escape of the split-monopole magnetic field from a Schwarzschild black hole. Left panel: Magnetic flux surfaces of the split-monopole solution,
which was used as an initial solution in these numerical simulations. Right panel: Magnetic flux surfaces of the numerical solution at t = 5.
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Figure 4. Magnetospheric Wald problem. Left panel: The angular velocity of magnetic field lines. There are 15 contours equally spaced between 0 and 0.67.
The angular velocity first gradually increased towards the axis but then reaches a maximum and goes slightly down. The thick lines show the ergosphere (outer
line) and the inner light surface (inner line). Middle panel: The magnetic flux surfaces. Right panel: The distribution of (B2 − D2)/ max(B2, D2). There are 15
contours equally spaced between −0.12 and 1.0. This quantity monotonically decreases towards the current sheet in the equatorial plane within the ergosphere.
The thick line shows the ergosphere.
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Field	line	ΩF	 D2-B2	

-  Many	other	FF/MHD	numerical	studies	show	BZ	process	works	
with	large	a.	(e.g.	Komissarov	01;	McKinney	06;	Barkov	&	Komissarov	09;	
Tchekhovskoy+	11;	Ruiz+	12;	Contopoulos+	13)	

-  It	is	proved	analy,cally	that	E = 0 cannot	be	maintained	for	open	
field	lines	(KT	&	Takahara	14)	

(Komissarov	2004)	

a = 0.9

But	the	detailed	mechanism	of	flux	produc,on	is	s,ll	debated	



Vacuum	Solu,on	
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Znajek, and Blandford to conclude that the hole behaves
quite generally as a rotating conductor. There are two
similarities between the Wald solution and the vacuum
solution of a rotating conductor in a magnetic field. The
invariant E B=*F"F„WD and a potential di6'erence ex-
ists across the field lines. Since the Wald field is similar
to the vacuum fields outside of a rotating magnetized

neutron star, Blandford and Znajek, Thorne, and Mac-
donald argued that in certain situations, the horizon
could be equated to a unipolar inductor.
The solution is given below in the frames of the zero

angular momentum observers (ZAMO's) (see Appendix
A for a definition).

80
„I(r +a )[(r a—)(r acos—8)+2a r(r —M)(1+cos 8)]—a bp sin 8Icosg,
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(2. lb)

(2.1c)

(2.1d)

(2. le)

where 80 is the strength of the uniform magnetic field at
infinity and A =(r +a ) —ba sin 8.
In this frame the electric field is purely radial at the

horizon, as for a spherical conductor. However, this re-
sult is frame dependent so it has no invariant physical
significance. Furthermore, the radial and time corn-
ponents of the ZAMO tetrad are singular at the horizon.
These two observations motivate the definition of horizon
fields in Sec. II B, which follow directly from the ZAMO
frames by (2.7).
In this "rest frame" of the horizon the magnetic and

the electric fields are radial as well. The analogy with the
conductor is strengthened at the expense of defining fields
in a null frame. The nature of the fields in the horizon
frame allowed Carter to show that the horizon is a sur-
face of constant electrostatic potential. '
The Wald field has an azimuthal Poynting Aux, but no

Poynting Aux into or out of the hole. There is no energy
extracting Poynting Aux, since there is no super-radiance
for vacuum fields when m=0 (Refs. 10 and 11) (where m
is the azimuthal quantum number of the field).
The concept of a potential involves separated points, so

it cannot be defined in a frame. It must be defined in a
coordinate system. In the stationary frames, when the
fields are evaluated at the horizon'

Boar+ (r+ —M) r+sin 8—2M cos 8(1+cos 8)0+— 4~ (r+ +a cos 8)

In the slow rotating case a/M «1,
—OHr+

80(3 cos 8—1) .8~c

(2.3)

(2.4)

that would simulate a unipolar generator.
The ZAMO radial electric field is equivalent to the ex-

istence of a fictitious surface charge density on the hor-
izon (see Fig. 1), a+ (Ref. 2):

—AH-+to= +ye
C

(2.2)

where the tilde means to evaluate in the stationary frames
(Boyer-Lindquist coordinates). Thus, there is a potential
drop across the field lines.
The Wald magnetic and electric fields are qualitatively

drawn in Fig. 1 in the Boyer-Lindquist coordinates. No-
tice that E-BWO. On polar field lines E B is of the same
sign. At lower latitudes E 8 changes sign on the field
lines. In the companion paper the sign reversal of E B
will be used to show that the component of E along B of
the vacuum solution cannot drive a global current system

FIG. 1. The Wald electric (the dashed lines} and magnetic
(solid lines) field lines. The e6'ective surface charge density is in-
dicated on the event horizon.

E

B

(Wald	1974;	Punsly	&	Coroni,	1989)	

•  Space-,me	rota,on	produces	E,	but	not	Bφ	
•  Bφ requires	Jp.	What	drives	Jp	??	



Unipolar	induc,on	

E = �V ⇥B

E

Sp
Jp
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r · Sp = �E · Jp

Pulsar	winds	 (Goldreich	&	Julian	1969)	

Energy	source!	Majer	rota,onal	energy	reduced	

Rota,ng	
conduc,ve	disk	



There	is	no	ma,er-dominated	region	in	BZ	process	

r · Sp = 0

E

SpJp

(Blandford	&	Znajek	1977)	

Unipolar	induc,on	cannot	work.	
What	drives	Jp	??	



Discussions	so	far	

•  Membrane	paradigm	
•  Horizon	is	assumed	as	a	rota,ng	conductor	(Thorne	et	al.	1986;	

Penna	et	al.	2013)		
•  Horizon	is	causally	disconnected	(Punsly	&	Coroni,	1989)	
•  Current	driving	mechanism	is	unclear	

•  Nega,ve	electromagne,c	energy	inflow	(Lasota+14;	Koide	&	Baba	14)	
•  Sp	=	E	Hφ	/	4π	=	ε	vp	(ε	<	0,	vp	<	0)?	
•  ε =	TEM

0
0	>	0	in	Kerr-Schild	coordinates	(KT	&	Takahara	2016)	

•  MHD	picture	
•  vp	=	par,cle	velocity:	ε	<	0	even	outside	ergosphere	(Takahashi

+90)	
•  Iner,al	drio	current	cannot	produce	all	of	Sp	
•  No	nega,ve	par,cle	energy	seen	in	MHD	simula,ons	

(Komissarov	05)	



Current	driven	in	a	pair	crea,on	gap	?	
No. 6] Extraction of Energy from Kerr Black Holes 1059

Fig. 5. Schematic picture showing the double DC circuits in the BH-FFDE magnetosphere (see figure 1; cf. figure 38 in Thorne et al. 1986 and figures 2
and 4 in Okamoto 1992). The frame-dragging effect lifts the battery/pair-creation surface to the upper null surface, SN, far above the horizon. Suppose
that a current line of I (Ψ) = constant (say I12) coincides with the field line Ψ1 in the polar range of 0 ≤ Ψ1 ≤ Ψc and with the field line Ψ2 in the
equatorial range of Ψc ≤ Ψ2 ≤ Ψ, i.e., I (Ψ1) = I (Ψ2) = I12, where dI/dΨ = 0 for Ψ = Ψc. The surface current I∞ = −[I12/(4πϖ∞)] eθ flows on
Sff∞ and the membrane current IH = [I12/(4πϖH)]eθ flows on SH. On the null surface, SN, there are the two batteries opposite in sign, coexistent back
to back with the gap, driving the force-free currents in the inner and outer portions of the DC circuit, respectively.

The “asymptotic infinity”, Sff∞, for the outflow in the BH-
FFDE is given by α = 1, ω = 0, and there must certainly be
the “classical” (as opposed to “general-relativistic”) domain,
where α is not so small and ω is not large, but as one comes
near the horizon with α = 0, the frame-dragging effect becomes
important with ω→ ΩH, and indeed it is this frame-dragging
that makes the angular velocity of field lines measured in the
dragged inertial frame, vF, in equation (12) negative toward
the horizon, vF < 0, and it is by α = 0 that produces “another
asymptotic infinity”, Sff H, for the inflow, in the sense that both
Sff∞ and SffH are negative acceptors of information, material,
and positive/negative form of energy and angular momentum
(Punsly, Coroniti 1989). Just as Sff∞ is discriminated from
the physical sphere-at-infinity, S∞, in the BH-FFDE as well as
the P-FFDE, we discriminate the force-free sphere-at-horizon,
Sff H, from SH in the following.

The gravity is given by g =−c2∇lnα throughout the magne-
tosphere (Macdonald, Thorne 1982), but the enormously strong
gravity of the hole toward the horizon is already embodied by
the presence of the horizon, itself, in the BH-FFDE. Then,
“massless” particles in the “zero-inertia” limit do not feel this
strong gravity at all, even near the horizon under assumptions
(cf. Punsly 2003). It is due not to gravity, but to the “plasma
condition” v → c, that particles restore inertia toward Sff H in
the BH-FFDE, similarly toward Sff∞ (see subsubsections 2.4.2
and 3.4.2).

As far as the stream equation (79) is concerned, it appears
that the force-free domain, Sff H < S < Sff∞, may be one
seamless region in which there cannot be any existing source of
electric currents, nor surfaces bounding the force-free domain

at finite distances from Sff H to Sff∞. One cannot find any
other characteristic length except for the horizon radius, r = rH,
which is defined by α = 0, and except for the inner and outer
light cylinders,ϖiL and ϖoL, which are defined by vF = ∓ct in
equation (12), i.e.,

ϖiL =
αc

ω−ΩF

∣∣∣∣
iL

, ϖoL =
αc

ΩF −ω

∣∣∣∣
oL

. (87)

In what follows, the surfaces defined by these lengths are
denoted by SiL and SoL. However, just as vF = ΩFt in
equation (18) for the P-FFDE indicates the magnetic sling-
shot toward S∞ or Sff∞, vF in equation (12) for the BH-FFDE
should have the same physical meanings in the black hole
magnetosphere. It can be seen from equation (12) that vF = + ct
at S = SoL and →∞ forϖ→∞ or S→Sff∞, whereas vF =−ct
at S = SiL and →−∞ for α→ 0 or S → Sff H; hence, there must
be such a surface, a kind of critical surface, at a distance ℓ = ℓN
along each field line where vF, and hence Ep, change sign, i.e.,

vF = Ep = 0, ω(ℓN,Ψ) = ΩF(Ψ). (88)

The location of the surface with ω = ΩF(Ψ) corresponds just
to the location where Thorne, Price, and Macdonald’s (1986)
equations (4.32) and (4.33) for v⃗F and E⃗ change sign, or where
E⃗ changes direction in their figure 38; it was already referred to
as the (upper) null surface SN in Okamoto (1992) and Horiuchi
et al. (1995).

It turns out now that the force-free region is not jointless,
but is divided by SN into two parts with crucially important
differences, i.e., inner and outer magnetospheres. The outer

(Okamoto	2006)	

This	case	could	be	relevant	for	the	upcoming	
high-resolu,on	radio	observa,ons	and	the	
observed	high-variability	gamma-rays.	
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Fig. S4: Light curve of IC 310 observed with the MAGIC telescopes in the night of November
12/13th, 2012, above 300GeV. As a flux reference, the two gray lines indicate levels of 1 and
5 times the flux level of the Crab Nebula, respectively. The precursor flare (MJD 56243.972–
56243.994) has been fitted with a Gaussian distribution. Vertical error bars show 1 standard
deviation statistical uncertainity. Horizontal error bars show the bin widths.
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IC310	TeV	gamma-rays	
(Aleksic	et	al.	2015,	Science)	
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M87
0.01pc
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Fig. 3.— VLBA+GBT 86GHz false-color total intensity image of the M87 jet. The image is

produced by combining the visibility data over the two epochs on 2014 February 11 and 26. The

restoring beam (0.25 × 0.08mas in PA 0◦) is shown in the bottom-right corner of the image. The

peak intensity is 500mJybeam−1 and the off-source rms noise level is 0.28mJybeam−1, where the

resulting dynamic range is greater than 1500 to 1. (A color version of this figure is available in the

online journal.)

M87	radio	jet	(Hada	et	al.	
2016)	
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,

MNRAS 442, 2855–2866 (2014)
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The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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Fig. 6 Space-time diagram of the inner and outer boundaries of the force-free region in

the BL and KS coordinates. In each diagram the left and right long arrows correspond to

the motions of the inner and outer boundaries, respectively, while the small arrows to the

propagation of light.

propagate towards the horizon, r → rH for t → ∞. In the KS coordinates, the inflow can pass

the horizon in a finite time of t = tH. In both of the coordinates, when the inner boundary

approaches the horizon, the outward signal from it becomes slower and slower and it can

hardly affect the force-free region. This will lead to the steady state.5

Although such a time-dependent state should be analyzed numerically, we use a toy model

to qualitatively illustrate the process of building the poloidal current structure. This model

assumes that (1) Bp is fixed to be split-monopole

∂r(
√
γBr) = 0, Bθ = 0 (55)

in the whole region, and that (2) the Kerr BH magnetosphere is separated into the force-

free region and the vacuum by geometrically thin boundaries moving radially. For further

simplicity, (3) we assume that the force-free region and the vacuum have their steady-state

structures, but the values of the physical quantities, particularly ΩF and Hϕ, keep updated

as determined by the varying conditions of the inner and outer boundaries.

Some of these assumptions would be violated in realistic experiments. Nevertheless we

consider that our toy model is useful to suggest the key points for resolving the issue on the

causality in the coordinate basis (Section 5.1.4), which also allows us to understand how the

steady state is maintained (Section 5.3).

5.1. Analysis in the BL coordinates

5.1.1. The force-free and vacuum regions. The electromagnetic quantities in the force-free

region are given as follows. The condition D ·B = 0 and ∇×E = 0 lead to

Eff
ϕ = Eff

r = 0, Eff
θ = −

√
γΩFB

r, (56)

5 In some MHD simulations, a static plasma (not a vacuum) is initially given and then a central
star starts rotating [54] or a BH starts rotating [55]. They show that a switching-on wave propagates
outward and that the outflow region settles down to the steady state after it passes the outer fast
magnetosonic point [22].
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Fig. 5 Schematic picture of a time-dependent process evolving towards the steady state.

The plasma particles keep injected between the inner and outer light surfaces, and the

vacuum is being filled with those plasma. This picture focuses on the inflow. The inner

boundary of the force-free region propagates towards the event horizon, producing the steady

poloidal current structure and the outward AM and Poynting fluxes.

5. Process towards the Steady State

As stated in Section 4.3, we address the issue how the steady poloidal current structure is

built causally, by discussing a time-dependent state evolving towards the steady state.

In the steady state, the plasma has the inner and outer light surfaces (see Section 2.3.2).

The particles flow in across the inner light surface and flow out across the outer light surface.

Therefore, new particles have to keep injected between the two light surfaces, as discussed in

many literatures [e.g. 2, 10, 33, 49]. In this paper we have assumed that the plasma particles

keep injected from outside the magnetosphere through electron-positron pair creation by

collisions of two photons [2, 50, 51] and/or diffusion of high-energy hadrons [47]4, and that

those particles maintain D ·B = 0 and carry the currents.

Now let us first consider a vacuum in Kerr space-time, and then begin the continuous injec-

tion of force-free plasma particles between the two light surfaces as a gedankenexperiment.

The inflow (outflow) will fill the vacuum near the horizon (at infinity). Simultaneously we

will see a process building the poloidal current structure. Hereafter we will call the (inflow

+ outflow) region filled with the force-free plasma ‘force-free region’. Figure 5 is a schematic

picture of this process focusing on the inflow.

We show the space-time diagrams of the inner and outer boundaries of the force-free region

in the BL and KS coordinates in Figure 6, in which the radial light signals are represented

by the small arrows. The outflow continues to propagate into the vacuum, i.e. the radius of

the outer boundary r → ∞ for t → ∞. In the BL coordinates, the inflow also continues to

4 In the geometrically thick accretion disk the particles can be non-thermally accelerated and
diffused out of the disk. The amount of those high-energy hadrons does not appear to be sufficient
for the total mass loading of AGN jets which provides the observationally inferred Lorentz factor
Γ ∼ 10− 100, but sufficient for satisfying D ·B = 0 [52, 53].
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for the total mass loading of AGN jets which provides the observationally inferred Lorentz factor
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contribution to Jr from moving surface charges at the boundary. The assumption (3) stated

in the first part of this section implies that the timescale for the quantities in the force-free

and vacuum regions becoming adjusted for steady-state structure is much smaller than the

timescale of the boundary propagation. We focus on the latter timescale, considering that

only R = R(t) depends on t in equation (65). Then we have

−Dr
vacV δ(R) +

1
√
γ
(∂θH

ff
ϕ )H(R) = 4πJr

ffH(R) + 4πηrδ(R). (70)

Taking account of equation (61), we obtain

ηr =
−Dr

vac

4π

∣∣∣∣
R=0

V, (71)

which implies that the surface charge density on the boundary σ = −Dr
vac|R=0/4π. This can

be confirmed by integrating ∇ ·D = 4πρ over the infinitesimally thin (in the r direction)

region enclosing the small area on the boundary and taking account of Dr
ff = 0.

For equation

−∂tD
θ − 1

√
γ
∂rHϕ = 4πJθ, (72)

we substitute

Dθ = Dθ
vacH(−R) +Dθ

ffH(R), (73)

Jθ = ηθδ(R), (74)

and equation (67). We have introduced ηθ, possible contribution to Jθ from the surface

current flowing on the boundary. Then we have

−Dθ
vacV δ(R) +Dθ

ffV δ(R)− 1
√
γ
Hff

ϕδ(R) = 4πηθδ(R), (75)

which leads to

V =
1
√
γ

Hff
ϕ + 4π

√
γηθ

Dθ
ff −Dθ

vac

∣∣∣∣∣
R=0

. (76)

The last one of Maxwell equations nontrivial for the present problem is

∂tB
ϕ +

1
√
γ
(∂rEθ − ∂θEr) = 0, (77)

for which we substitute

Bϕ = Bϕ
ffH(R), (78)

Eθ = Evac
θ H(−R) + Eff

θ H(R), (79)

Er = Evac
r H(−R). (80)

Then we have

−Bϕ
ffV δ(R) +

1
√
γ

[
−Evac

θ δ(R) + Eff
θ δ(R)− (∂θE

vac
r )H(−R)

]
= 0. (81)

Integrating equation (81) over −ϵ < R < ϵ and take a limit of ϵ → 0, the last term vanishes,

and we obtain

V =
1
√
γ

Eff
θ − Evac

θ

Bϕ
ff

∣∣∣∣
R=0

,

=
α
√
γ

Dff
θ −Dvac

θ

Bϕ
ff

∣∣∣∣
R=0

, (82)
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(∂rEθ − ∂θEr) = 0, (77)

for which we substitute

Bϕ = Bϕ
ffH(R), (78)

Eθ = Evac
θ H(−R) + Eff

θ H(R), (79)

Er = Evac
r H(−R). (80)

Then we have

−Bϕ
ffV δ(R) +

1
√
γ

[
−Evac

θ δ(R) + Eff
θ δ(R)− (∂θE

vac
r )H(−R)

]
= 0. (81)

Integrating equation (81) over −ϵ < R < ϵ and take a limit of ϵ → 0, the last term vanishes,

and we obtain

V =
1
√
γ

Eff
θ − Evac

θ

Bϕ
ff

∣∣∣∣
R=0

,

=
α
√
γ

Dff
θ −Dvac

θ

Bϕ
ff

∣∣∣∣
R=0

, (82)
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Steady	State	

r · Lp = �@tl � (Jp ⇥Bp) ·m

r · Sp = �@te�E · Jp r · Sp = 0

r · Lp = 0
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Fig. 6 Space-time diagram of the inner and outer boundaries of the force-free region in

the BL and KS coordinates. In each diagram the left and right long arrows correspond to

the motions of the inner and outer boundaries, respectively, while the small arrows to the

propagation of light.

propagate towards the horizon, r → rH for t → ∞. In the KS coordinates, the inflow can pass

the horizon in a finite time of t = tH. In both of the coordinates, when the inner boundary

approaches the horizon, the outward signal from it becomes slower and slower and it can

hardly affect the force-free region. This will lead to the steady state.5

Although such a time-dependent state should be analyzed numerically, we use a toy model

to qualitatively illustrate the process of building the poloidal current structure. This model

assumes that (1) Bp is fixed to be split-monopole

∂r(
√
γBr) = 0, Bθ = 0 (55)

in the whole region, and that (2) the Kerr BH magnetosphere is separated into the force-

free region and the vacuum by geometrically thin boundaries moving radially. For further

simplicity, (3) we assume that the force-free region and the vacuum have their steady-state

structures, but the values of the physical quantities, particularly ΩF and Hϕ, keep updated

as determined by the varying conditions of the inner and outer boundaries.

Some of these assumptions would be violated in realistic experiments. Nevertheless we

consider that our toy model is useful to suggest the key points for resolving the issue on the

causality in the coordinate basis (Section 5.1.4), which also allows us to understand how the

steady state is maintained (Section 5.3).

5.1. Analysis in the BL coordinates

5.1.1. The force-free and vacuum regions. The electromagnetic quantities in the force-free

region are given as follows. The condition D ·B = 0 and ∇×E = 0 lead to

Eff
ϕ = Eff

r = 0, Eff
θ = −

√
γΩFB

r, (56)

5 In some MHD simulations, a static plasma (not a vacuum) is initially given and then a central
star starts rotating [54] or a BH starts rotating [55]. They show that a switching-on wave propagates
outward and that the outflow region settles down to the steady state after it passes the outer fast
magnetosonic point [22].
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Light	
cones	

The	boundary	(AM/energy	source)	
does	not	affect	the	exterior		

-	No	electromagne,c	sources	are	
required	in	the	steady	state	
(partly	because	of	no	resis,vity)	

-	BH	decelerates	directly	by	
Poyn,ng	flux	(different	from	
mechanical	Penrose	process)	



Origin	of	Schwarzschild	space,me	
The	source	of	Schwarzschild	gravita,onal	field	is	the	mass	
inside	the	horizon,	but	the	outside	of	horizon	cannot	know	it	

Collapsing	material	

Event	horizon	

Light	cones	 The	space,me	metric	is	
determined	by	the	mass	
distribu,on	at	prior	,mes	

t

r

Informa,on	of	
mass	distribu,on	



Conclusion	

•  The	Poyn,ng	flux	Sp	=	E	Hφ/4π	in	the	BZ	process	
consists	of	the	steady	current	flows	in	the	electric	
poten,al	differences	

•  The	current	driving	(Sp	produc,on)	mechanism	can	
be	discussed	only	in	the	,me-dependent	state	
towards	steady	state,	like	the	mass	source	of	a	BH	

•  In	the	steady	state,	Sp	needs	no	electromagne,c	
source.	The	steady	currents	can	keep	flowing	in	the	
ideal	MHD	condi,on.	No	gap	is	needed.	The	BH	
rota,onal	energy	is	reduced	directly	by	Sp	without	
being	mediated	by	the	nega,ve	energies.		

•  Our	argument	is	based	on	some	assump,ons.	
Detailed	plasma	simula,ons	are	needed	to	validate	it	



Back-up	slides	



Nega,ve	electromagne,c	energy?	

Consequently, the issue on the field lines threading the horizon is well defined as “How is

the steady current structure causally built?” We consider that this issue may not be resolved

by investigating only the steady-state structure. The phenomena at the horizon should be a

result from those having occurred outside the horizon in the prior times t. In Section 5, we

address this issue by discussing a time-dependent state evolving towards the steady state.

4.4. Negative electromagnetic energy?

Lasota et al. [31] and Koide & Baba [32] argue that the outward Poynting flux is mediated by

‘inflow of the negative electromagnetic energy’ (see also K09). Although this interpretation

analogous to the mechanical Penrose process looks attractive for causal production of the

Poynting flux, it is difficult to consider the flow of the steady field (rather than waves).

Furthermore, we find that the sign of the electromagnetic energy density depends on the

coordinates.

In the BL coordinates, the electromagnetic AM and energy densities can be written down

by (K09)

l =
1

4πα
γϕϕ(ΩF − Ω)(BθBθ +BrBr), (49)

e =
1

8πα

[

α2B2 + γϕϕ(Ω
2
F − Ω2)(BθBθ +BrBr)

]

. (50)

Thus l and e is negative (and diverges) near the horizon when ΩF < ΩH. This condition is

satisfied in the BZ split-monopole solution.

On the other hand, in the KS coordinates, the calculations shown in Appendix B lead to

4παl =
Σ sin2 θ

ϱ2
(ΩF − Ω)BθBθ − 2r sin2 θBrBϕ +ΩF(ϱ

2 + 2r) sin2 θ(Br)2 (51)

8παe =

[

Σ sin2 θ

ϱ2
(ΩF + Ω)(ΩF − Ω) +

ϱ2∆

Σ

]

BθBθ +∆ sin2 θ(Bϕ)2

−2a sin2 θBrBϕ +
[

1 + Ω2
F(ϱ

2 + 2r) sin2 θ
]

(Br)2. (52)

In the BZ split-monopole solution as an example, in whichBθ ≈ 0 andBϕ < 0 in the northern

hemisphere, one has

l > 0, e > 0. (53)

This condition is generally valid when Bθ is weak and BrBϕ < 0.

Note that

l = αT t
ϕ = −T µ

ν nµχ
ν , e = −αT t

t = T µ
ν nµξ

ν (54)

depend on the coordinates, while Ttϕ = Tµνξµχν and Ttt = Tµνξµξν are scalars. The concept

of the negative electromagnetic energy density depends on the coordinates, and thus it is

not physically essential.3

3 Lasota et al. [31] argue that the electromagnetic energy density calculated in the KS coordinates
is negative near the horizon, but they define the electromagnetic energy density as Tµν lµξν where
lµ = αnµ and nµ is the four-velocity of the BL FIDO.
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-	Electromagne,c	energy	density	e	in	the	Boyer-Lindquist	
coordinates	can	be	nega,ve	for	Ω	<	ΩF		

Sp = evp > 0 for	e < 0 &	vp	< 0 	 (Lasota	et	al.	2014;	
Kiode	&	Baba	2014)	

-  But	vp	is	not	defined.	The	concept	of	
advec,on	of	steady	field	is	ambiguous.	

-  We	showed	e > 0 in	the	Kerr-Schild	
coordinates	

(KT	&	Takahara	2016)	

Sp = ⌦F
�H'

4⇡

�↵T t
t =



MHD	model	

Sp = 4⇡⇢c2�vpE > 0 for	 vp < 0, E < 0
Energy	flux	density	

19
90
Ap
J.
..
36
3.
.2
06
T

(Takahashi	et	al.	1990)	
Separa,on	surface	
may	be	located	outside	
the	ergosphere.	

⌦F ⇠ !H

2

Bernoulli	constant	

Ergo	
sphere	 -	Cross-field	(iner,al	drio)	

currents	cannot	produce	all	
of	Sp	

(Komissarov	2009)	

-	MHD	simula,ons	show	
the	steady	state	without	
nega,ve	par,cle	energy	
(Komissarov	2005)	



Field	lines	threading	equatorial	plane	

H' = 0

E

Sp

(KT	&	Takahara	2014,	2016)	

- D2 > B2 possible,	crea,ng	
AM	flux	(Hφ)	&	Poyn,ng	flux	

-	For	D2 ~ B2,	par,cles	are	
strongly	accelerated	in	
direc,on	of	–φ,	obtaining	
nega,ve	energies	

Jp

D

r · Sp = �E · Jp

r · Lp = �(Jp ⇥Bp) ·m

-	Analogous	to	the	
mechanical	Penrose	process	



Inflow	of	nega,ve-energy	par,cles	
Sp

@r
p
�(�↵⇢mUtU

r) = E · Jp < 0

�Ut < 0, Ur < 0



Znajek	condi,on	

H' = �↵

r
�''

�✓✓
D✓ BL	coordinates	

-	Ohm’s	law	for	the	current	flowing	on	the	membrane	
(Thorne	et	al.	1986	“Membrane	Paradigm”)	

where we have used equation (11) for the last equality. EliminatingDθ
ff −Dθ

vac from equations

(76) and (82) leads to

V =
±α
√
γrr

√

1 +
4π

√
γηθ

Hff
ϕ

. (83)

Here we take the minus sign, since we have assumed that the inner boundary keeps mov-

ing inward. In Section 5.1.3, we will confirm that this assumption is consistent with the

electromagnetic structure which we found.

Let us consider the case of ηθ = 0. Then we have

V =
−α
√
γrr

, (84)

and

Hff
ϕ = −α

√

γϕϕ
γθθ

(Dff
θ −Dvac

θ )

∣

∣

∣

∣

R=0

= −
√

γϕϕ
γθθ

[(Ω− ΩF)
√
γBr − αDvac

θ ]

∣

∣

∣

∣

R=0

. (85)

Substituting dr = V dt for equation (1), we find

ds2 = γϕϕ(dϕ− Ωdt)2 + γθθdθ
2 ≥ 0, (86)

which has to be ds2 = 0. This means that the four-velocity of the boundary is null. In reality,

however, the particles at the boundary cannot propagate with this speed, and thus one can

conclude

ηθ > 0, (87)

i.e., the cross-field current must flow on the boundary. Note that equation (85) with αDvac
θ →

0 becomes equivalent to the regularity condition at the horizon (equation 38).

5.1.3. Consistency check. In our toy model of the time-dependent state, we have not

taken into account equations of the particle motions, using the force-free approximation for

the force-free region, but we have assumed that the inner boundary keeps moving inward,

i.e. V < 0. Here we examine the direction of the Lorentz force exerted on the particles at the

boundary, and confirm that it is consistent with the assumption of V < 0. It is reasonable

that the force-free approximation is not applicable for the boundary between the force-free

and vacuum regions, and indeed we have seen that the cross-field current flows there, ηθ > 0.

The particle number density nff of the force-free region is high enough to screen the

electric field along the B field lines, i.e. Dr
ff = 0. We may even assume that nff ≫ ρff/e,

where ρff is the charge density of the force-free region, and then the distribution of nff is

not directly related to that of ρff . On the other hand, n approaches zero at the boundary

towards the vacuum region, where n ≫ ρ/e is not valid, and non-zero surface charge density

σ just implies non-zero surface mass density σm. Thus we can write the equation of the

particle motions in the r direction as ∇ν [σmU rUνδ(R) + ρmffU r
ffU

ν
ffH(R)] = F r

νI
ν and the

continuity equation as ∇ν [σmUνδ(R) + ρmffUν
ffH(R)] = 0, where ρmff is the mass density of

the force-free region. We combine these two equations, use Uν
ff∂νH(R) = U t

ff(V
r
ff − V )δ(R),
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H↵
' =

p
�(D✓

↵ �D✓
vac)V � 4⇡

p
�⌘✓

-	Rather,	it	should	be	interpreted	as	displacement	current	
(see	also	Punsly	2008)	

⌘✓ ! 0

↵D✓
vac ! 0
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Figure 2. Monopole field solution for a = 0.1 and B 0 = 1 at time t = 50.
(a) The angular velocity of magnetic field lines at r = 3. The perturbative
solution of Blandford and Znajek gives ! = 0.5 !h, where !h is the angular
velocity of the black hole. (b) H φ of the numerical solution (crosses) and of
the perturbative solution (continuous line) at r = 3. (c) Ě·B̌ along θ = 1 and
θ = π − 1. The small unscreened component Ě∥ of the electric field drives
the conductivity current towards the black hole in the upper hemisphere and
away from it in the lower hemisphere.

reason it has been playing a key role in the development of black
hole electrodynamics. One important property of this solution is that
all magnetic field lines penetrate the black hole horizon. Macdonald
(1984) attempted to construct numerical steady-state solutions for
a more reasonable configuration of the magnetic field where only
a fraction of the magnetic field lines originate from the black hole
itself. The remaining magnetic flux splits between field lines orig-
inating from the accretion disc and field lines passing through the
gap between the hole and the disc. In general, the angular velocity of
magnetic field lines in steady-state force-free magnetospheres has
to be prescribed, so one faces the task of setting physically sensible
boundary conditions for all these three different types of magnetic
field lines. In the case of the field lines originating from the accre-
tion disc, the solution is obvious. Their angular velocity is given by
the angular velocity of the disc at the footpoints. As for the other
two kinds of magnetic field lines, this task is less trivial. In their
solution, Macdonald & Thorne (1982) and later Macdonald (1984)
appealed to the existing analogy between the black hole horizon and
a rotating conducting sphere. They concluded that only field lines
penetrating the event horizon rotate, whereas in the gap, ! = 0.

A somewhat simpler problem is the magnetospheric (plasma-
filled) version of the Wald (1974) problem for a rotating black hole
(see also Section 5.1). In this problem, just like in the problem
considered by Macdonald (1984), only a small fraction of the mag-
netic field lines penetrate the black hole horizon. If the analysis of
Macdonald & Thorne (1982) was correct, then only these field lines
would be forced to rotate. Komissarov (2002b) tried to find a steady-
state force-free solution to this problem by means of time-dependent
numerical simulations, but failed. The numerical solution invariably
evolved towards the state where B2 − D2 turned negative inside the
ergosphere. In fact, the solution seemed to indicate the development
of a current sheet in the equatorial plane within the ergosphere with
all magnetic field lines penetrating the current sheet being forced
to rotate in the same sense as the black hole. If this conclusion is
correct, a critical revision of the current perception of the role of the
event horizon in the black hole electrodynamics, as well as of the
virtues of the membrane paradigm, is required. Thus, the magne-
tospheric Wald problem is an ultimate ‘Rosetta Stone’ for research
into black hole electrodynamics.

To achieve high resolution within the ergosphere, these simula-
tions were carried out using the multigrid technique. We start with
a relatively low-resolution grid and continue simulations until the
solution becomes more or less steady within r = 4. Then the resolu-
tion is increased by a factor of 2 and the simulations are continued
until a new approximately steady-state solution is reached, and so
on. During the grid refinement the numerical solution on the finer
grid is found via interpolation. The final grid has 800 cells in the
θ -direction (θ ∈ [0, π]) and 1000 cells in the r-direction (r ∈ [0.9r +,
110]). The initial solution is described by the same B as in the vac-
uum solution of (Wald 1974, equation 101) and has E = 0, which
implies a non-rotating magnetosphere.

Fig. 4 shows the final solution, at t = 126, for a Kerr black hole
with a = 0.9. As suggested in Komissarov (2002b), a current sheet
is formed in the equatorial plane within the black hole ergosphere.
This is clearly seen in the right panel of Fig. 4, which shows the
distribution of (B2 − D2)/ max(B2, D2). Near the equator the pre-
dominantly radial electric field is larger than the magnetic field
and drives the electric current across the poloidal magnetic field
lines. Both the radial component (the middle panel of Fig.4) of the
magnetic field and its azimuthal component exhibit a break in the
equatorial plane on the scale of the current sheet. The most im-
portant result is shown in the left panel of Fig. 4: all the magnetic

C⃝ 2004 RAS, MNRAS 350, 427–448
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solution of Blandford and Znajek gives ! = 0.5 !h, where !h is the angular
velocity of the black hole. (b) H φ of the numerical solution (crosses) and of
the perturbative solution (continuous line) at r = 3. (c) Ě·B̌ along θ = 1 and
θ = π − 1. The small unscreened component Ě∥ of the electric field drives
the conductivity current towards the black hole in the upper hemisphere and
away from it in the lower hemisphere.

reason it has been playing a key role in the development of black
hole electrodynamics. One important property of this solution is that
all magnetic field lines penetrate the black hole horizon. Macdonald
(1984) attempted to construct numerical steady-state solutions for
a more reasonable configuration of the magnetic field where only
a fraction of the magnetic field lines originate from the black hole
itself. The remaining magnetic flux splits between field lines orig-
inating from the accretion disc and field lines passing through the
gap between the hole and the disc. In general, the angular velocity of
magnetic field lines in steady-state force-free magnetospheres has
to be prescribed, so one faces the task of setting physically sensible
boundary conditions for all these three different types of magnetic
field lines. In the case of the field lines originating from the accre-
tion disc, the solution is obvious. Their angular velocity is given by
the angular velocity of the disc at the footpoints. As for the other
two kinds of magnetic field lines, this task is less trivial. In their
solution, Macdonald & Thorne (1982) and later Macdonald (1984)
appealed to the existing analogy between the black hole horizon and
a rotating conducting sphere. They concluded that only field lines
penetrating the event horizon rotate, whereas in the gap, ! = 0.

A somewhat simpler problem is the magnetospheric (plasma-
filled) version of the Wald (1974) problem for a rotating black hole
(see also Section 5.1). In this problem, just like in the problem
considered by Macdonald (1984), only a small fraction of the mag-
netic field lines penetrate the black hole horizon. If the analysis of
Macdonald & Thorne (1982) was correct, then only these field lines
would be forced to rotate. Komissarov (2002b) tried to find a steady-
state force-free solution to this problem by means of time-dependent
numerical simulations, but failed. The numerical solution invariably
evolved towards the state where B2 − D2 turned negative inside the
ergosphere. In fact, the solution seemed to indicate the development
of a current sheet in the equatorial plane within the ergosphere with
all magnetic field lines penetrating the current sheet being forced
to rotate in the same sense as the black hole. If this conclusion is
correct, a critical revision of the current perception of the role of the
event horizon in the black hole electrodynamics, as well as of the
virtues of the membrane paradigm, is required. Thus, the magne-
tospheric Wald problem is an ultimate ‘Rosetta Stone’ for research
into black hole electrodynamics.

To achieve high resolution within the ergosphere, these simula-
tions were carried out using the multigrid technique. We start with
a relatively low-resolution grid and continue simulations until the
solution becomes more or less steady within r = 4. Then the resolu-
tion is increased by a factor of 2 and the simulations are continued
until a new approximately steady-state solution is reached, and so
on. During the grid refinement the numerical solution on the finer
grid is found via interpolation. The final grid has 800 cells in the
θ -direction (θ ∈ [0, π]) and 1000 cells in the r-direction (r ∈ [0.9r +,
110]). The initial solution is described by the same B as in the vac-
uum solution of (Wald 1974, equation 101) and has E = 0, which
implies a non-rotating magnetosphere.

Fig. 4 shows the final solution, at t = 126, for a Kerr black hole
with a = 0.9. As suggested in Komissarov (2002b), a current sheet
is formed in the equatorial plane within the black hole ergosphere.
This is clearly seen in the right panel of Fig. 4, which shows the
distribution of (B2 − D2)/ max(B2, D2). Near the equator the pre-
dominantly radial electric field is larger than the magnetic field
and drives the electric current across the poloidal magnetic field
lines. Both the radial component (the middle panel of Fig.4) of the
magnetic field and its azimuthal component exhibit a break in the
equatorial plane on the scale of the current sheet. The most im-
portant result is shown in the left panel of Fig. 4: all the magnetic
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Monopole	solu,on	with	a	=	0.1		
(Komissarov	2004)	

We	consider	that	a	small	field-aligned	electric	field	may	appear	
in	numerical	simula,ons	and	in	reality	with	small	resis,vity	

D ·B 6= 0
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3 THE LOW-MASS LIMIT

3.1 Basic equations

In the present section, we take into account the particle inertia. Ac-
cording to the results of Section 2.2, the inertial effects are believed
to be so small that the quantities of the two-fluid model are close
to their force-free values with an admissible accuracy. However,
within the framework of representation of massless particles, the
particle velocities are not determined exhaustively. To obtain the
proper force-free velocity distributions one has to consider the first
approximation in ξ , in which case the solvability condition for the
quantities of the first order in ξ yields the zero-order quantities
unambiguously. The resultant force-free picture would present the
low-mass limit of the self-consistent two-fluid model.

Given that ξ ≪ 1, the quantities entering the equation of motion
(1) can be presented as

v± = v0± + ξv1± + · · · ,

E = E0 + ξ E1 + · · · ,

B = B0 + ξ B1 + · · · , (22)

where E0 and B0 are the force-free fields given by equations (10)
and (11) and the components of v0± obey the relations (13) and the
continuity condition (17); hereafter the subscripts ‘0’ are omitted.
Note that, in agreement with the estimates of Section 2.2, ξγ c ≪ 1
and γ is not treated as a large parameter. This is essentially distinct
from the traditional approach in the literature, when the analogue
of equation (13) is complemented with the assumption v2 ≡ 1
(e.g. equation 1 in Gruzinov 2008 can be obtained in such a way).

Making use of equation (22) in equation (1) and grouping the
terms of order ξ yields

vr±
∂

∂r

(
γ±vr±

)
−

v2
φ±γ±

r
= ±

(
E1r − vφ±B1θ − sin θ

r
v1θ±

)
,

v2
φ±γ± cos θ

r sin θ

= ∓
(

E1θ − vr±B1φ + vφ±B1r + sin θ

r
v1r± + v1φ±

r2

)
,

vr±
∂

∂r

(
γ±vφ±

)
+ vr±vφ±γ±

r
= ±

(
E1φ + vr±B1θ − v1θ±

r2

)
.

(23)

Excluding v1θ± from the first and the third equations of the set (23)
and making use of equation (13), one can obtain

dvr±

dx
− 1

2

[
1 − x

vr±
+ 3x − 3(1 + x)vr± + (2 + x)v2

r±

]

= ± a
√

x

2vr± sin3 θ

[
(1 − x) + 2xvr± − (1 + x)v2

r±

]3/2
, (24)

where x ≡ r2sin 2θ and

a ≡ E1r

r2
−

E1φ sin θ

r
− B1θ sin θ

r
≡ (E · B)1

is the first-order longitudinal electric field. Together with the con-
tinuity condition (17), equation (24) yields the radial velocities of
the two particle species and the relation between µ and a.

Given that a ≡ 0, the two components of equation (24) become
identical and the solution has the form

vr± = w0 ≡ (1 − x)
√

1 + C±(x − 1)
1 − x

√
1 + C±(x − 1)

, (25)

Figure 1. Radial velocity component for electrons (asterisks) and positrons
(points) as a function of the axial distance; ε = 0.1, γ i = 10. The solid line
without markers shows the quantity w0 determined by equation (25).

where C± are arbitrary constants with respect to x. Note that they
still can depend on θ , which enters x as a numerical factor, and in
general C+ ̸= C−.

As is seen from equation (25), at x = 0 we have w0 =
√

1 − C±.
Then, keeping in mind equation (13), C± can be recognized as
the inverse square of the initial Lorentz-factors of electrons and
positrons, C± ≡ 1/γ 2

i± . The dependence of w0 on x is presented in
Fig. 1 by the line without markers. As long as (x − 1)C± ≪ 1,
w0 increases slightly, remaining almost unchanged, whereas at
(x − 1)C± ∼ 1 it starts growing drastically, so that the applicability
condition for the low-mass approximation, ξγ ≪ 1, is ultimately
broken.

Note that, according to equation (15), the velocities of the two
particle species should differ. At the same time, one can see that any
choice of C+ ̸= C− in equation (25) cannot satisfy the continuity
condition (17). Thus, at the assumption a ≡ 0, it is impossible to
construct the self-consistent two-fluid description of the monopolar
case. The presence of the first-order longitudinal electric field ap-
pears the necessary constituent of the model. With the Ohm’s law
j∥ = σE∥, this implies the plasma conductivity σ ∼ ξ−1. Recall that
since E∥ ∼ ξ and a ≡ E∥/ξ , a is generally of the order of ξ 0. If one
take a ≪ 1 (with a ∼ ξ 0), one can expect that the velocities of the
particle species differ slightly from each other (cf. equation 24) and
from that given by equation (25), whereas the continuity condition
can hopefully be satisfied. As can be intuitively concluded, it is the
case that can be relevant to the pulsar magnetosphere and so it is of
a certain interest.

3.2 The case |v+ − v−|/v+ ≪ 1

To proceed further it is convenient to introduce the quantities

u± ≡ vr±

1 − vr±
, (26)

in which case equation (17) is simplified to

u−

u+
= µ . (27)

MNRAS 446, 2243–2250 (2015)
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where w0 = ωϖ/α, and J ′
± and K ′

± are derivatives of J± and K±
with respect to F±.

We have thus obtained a system of equations that govern the
electromagnetic field structure and plasma flows. Four partial dif-
ferential equations (13), (15), and (29) should be solved with two
integrals (27), (28) and the number density (23) derived by the
stream functions. These are reduced to those obtained for pulsar
electrodynamics in a flat spacetime (Kojima & Oogi 2009) by set-
ting M = a = 0. These equations for G, $, and F± are interde-
pendent in a non-linear manner, so iterative methods are needed
to self-consistently solve a set of these equations. For example,
assume that functions G, %, and F± are known. The azimuthal ve-
locity vφ̂ and Lorentz factor γ are determined by the integrals in
equations (27) and (28). The number density is calculated from
equation (23). Thus, the source terms, namely, the toroidal current
jφ̂ in equation (13) and the charge density ρe in equation (15),
are calculated from the fluid quantities of both species. The source
terms and complicated coefficients in the equation of F± are also
calculated. A new set of functions is solved for these source terms
with appropriate boundary conditions. This procedure is repeated
until convergence.

3 MO D E L D E S C R I P T I O N

3.1 Parameters and normalization

We now describe a general framework for determining the electro-
magnetic fields and charged flows described in the previous section.
Here, we discuss physical parameters involved in our system.

There are two independent parameters. One is a dimension-
less gyrofrequency, χ ≡ ωBM = eB0M/m, where B0 is a typi-
cal magnetic field strength. Associated with B0 is a characteris-
tic number density nc ≡ B0/(4πeM). The number density is re-
duced to the so-called Goldreich–Julian density if the time-scale
2M is replaced by the stellar angular velocity *−1

s . The actual
number density is normalized by λnc, where λ represents the mul-
tiplicity of pair plasma. We can express other physically mean-
ingful quantities using these dimensionless parameters χ and λ.
The normalized plasma frequency κ with number density λnc

is given by κ2 ≡ ω2
p M2 = 4πe2(λnc)M2/m = λχ . The ratio of

λ to χ is written as k ≡ λ/χ = (1/4) × (2mλnc)/(B2
0/8π), and

represents the ratio of the rest mass energy density of pairs to
the electromagnetic energy density. These numbers χ and λ are
very large in astrophysical situations. A typical value of χ is
1013(B0/kG)(M/108M⊙), relevant to active galactic nuclei powers
∝(MB0)2. The amount of pair plasma is unclear, but we here esti-
mate it from the accretion rate Ṁ . Using the electron number density
ne ∼ 108(Ṁ/10−2ṀE)(M/108M⊙)−1 cm−3 near the horizon, we
have κ2 = 1022(Ṁ/10−2ṀE)(M/108M⊙). The other parameters
are calculated as λ = κ2/χ ∼ 109 and k = κ2/χ2 ∼ 10−4. See also
Beskin (2010) for estimates for microquasars and gamma-ray bursts,
for which λ ∼ 1010–1014. It is true that λ, χ , κ2 ≫ 1, but these values
should be regarded as an order estimate with large uncertainties. In
particular, the ratio k = λ/χ may drastically change in the cases
of matter-dominated or magnetically dominated flows. Indeed, the
activation condition of the BZ mechanism in the MHD flows is ap-
proximately given by k < 1, for which the Alfvén speed exceeds the
free-fall velocity at the ergosphere (Komissarov & Barkov 2009).
Magnetization parameter corresponds to 1/k.

We provide an explicit model of electromagnetic fields and
plasma inflows in a hemisphere (0 ≤ θ ≤ π/2), depicted schemati-
cally in Fig. 1. We assume that the electromagnetic fields at rout ≫ M

Figure 1. A schematic illustration for electromagnetic fields and plasma
inflows around a rotating black hole. The magnetic field is radial without
toroidal component, and electric field vanishes in the outer region. Black
hole rotation affects the plasma flow, and a new electromagnetic structure is
induced in the inner region. There is a current sheet on an equator to support
the split-monopole magnetic field.

are described by B = B0(M/r)2er̂ , Bφ̂ = 0 and E = 0, where
B0 is a constant representing magnetic field strength. This con-
dition differs from the wind solution by Michel (1973) in which
toroidal magnetic field and electric fields are given by Bφ̂ = Eθ̂ =
−*FB0M2sin θ/r. Our concern is how the parameter *F is de-
termined, so that the condition *F = 0 is used at rout. Such
a split-monopole magnetic field may be formed by strong cur-
rents on an equatorial disc, by which upper and lower hemi-
spheres are detached. The electromagnetic fields are obtained by the
derivatives of Ḡ ≡ G/(B0M

2) = (1 − cos θ ), S̄ ≡ S/(B0M) = 0
and $̄ ≡ $/(B0M) = 0, where Ḡ, S̄ and $̄ are normalized di-
mensionless quantities.

As for the pair plasma, we assume neutral flow falling along
the radial magnetic fields at rout ≫ M, that is, v±

φ̂
→ 0 and αγ ±

→ 1. The stream functions F± of both components should coin-
cide there, since F+ − F− = S/(4πe) = 0 in equation (24). Like
the magnetic function G, both functions are chosen to be radial,
F± = −λncM2(1 − cos θ ), where nc ≡ B0/(4πeM) is a character-
istic number density and the minus sign denotes inflow v±

r̂ < 0. We
introduce dimensionless stream functions F̄± = F±/(λncM

2) and
the dimensionless number density n̄± = n±/(λnc). The relation (24)
between S̄ and F̄± becomes S̄ = λ(F̄+ − F̄−).

Under these conditions at rout, the integrals J± and K± in
equations (27) and (28) are explicitly given by

J± = ∓ χ

λncM
F± = ∓χMF̄±, K± = αγ± = 1, (30)

where the Lorentz factor at rout( ≫M) is for simplicity chosen as
γ ± = α−1(≈1). Once J± is specified, the azimuthal velocity v±

φ̂
can

be solved at any point from equation (27) as

v±
φ̂

= ∓ χM

ϖγ±
(F̄± + Ḡ). (31)

The Lorentz factor γ ± can also be solved from equation (28) as

αγ± = 1 ± χ
[
ωM(F̄± + Ḡ) − $̄

]
. (32)

Since we have K ′
± = 0 and J ′

± = ∓χ/(λncM), equation (29) is
reduced to

αϖ 2∇ ·
(

M2γ±

αn̄±ϖ 2
∇F̄±

)
= ±χ

[
α2ϖ n̄±

M

(
w0 + v±

φ̂

)
+ S̄

]
,

(33)

where w0 = ωϖ/α.
In this model, we have imposed the conditions S = 0 and

$ = 0 at rout, so the electromagnetic Poynting power (16) is zero

MNRAS 454, 3902–3911 (2015)
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These	2-fluid	analyses	show	the	global	viola,on	of	

E ·B = 0
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,

MNRAS 442, 2855–2866 (2014)
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If	E=0,	Hφ=αBφ=0	(No	ang.	mom.	or	Poyn,ng	flux)	along	a	field	line,	

D = � 1

↵
� ⇥Bp D2 > B2

for ↵2 < �2

(in	the	ergosphere)	

Then	the	force-free	is	violated,	and	the	strong	D	field	drives	Jp	
across	Bp	(Hφ	≠	0),	weakening	D	(E	≠	0).	

The	origin	of	the	electromo,ve	force	is	ascribed	to	the	ergosphere.	

(KT	&	Takahara	2014,	MNRAS;	see	also	Komissarov	2004;	2009)	



Blandford	&	Znajek	(1977)	
H' = �2⇡⌦FB

rp� sin ✓Condi,on	at	infinity	

H' = 2⇡(⌦F � ⌦H)B
rp� sin ✓ At	event	horizon	

•  Kerr	space-,me	
•  Steady,	axisymmetric	
•  Slowly	rota,ng	BH	

	
•  Split-monopole	B	field	

•  Force-free	approxima,on	
(Electromagne,cally	dom.)	

Brp� = const.

H' = const.

⌦F = ⌦H/2 +O(a3)

a =
J

Mrgc
⌧ 1

E = �⌦Fe' ⇥B

“Field line angular velocity”	



Promising	Scenario	

Low	density	 High	density	
•  Energy	injec,on	into	dilute	
region	above	BH　→	
Rela,vis,c	speed	

•  Steady	extrac,on	of	BH	
rota,onal	energy	(Blandford	
&	Znajek	1977)　→　
Poyn,ng-dom	jet	

•  Origin	of	jet	majer	debated	
(see	KT	&	Takahara	2012)	

•  Majer	accelera,on	by	
Lorentz	force		

•  Collima,on	by	external	
pressure	(many	literatures;	
see	Lyubarsky	2009)	

Disk	wind	

Jet	

Consistent	with	the	radio	data	of	M87	jet	
(e.g.	Asada+	14;	Kino+	15)	


