# Causal production of the electromagnetic energy flux in the Blandford-Znajek process 

Toma \& Takahara 2016, PTEP, 3E01 (arXiv:1605.03659)

Kenji TOMA<br>(Tohoku U, Japan) with F. TAKAHARA (Osaka U)

## Blandford \& Znajek (1977)

- Slowly rotating Kerr space-time

$$
a=\frac{J}{M r_{g} c} \ll 1
$$

- Steady, axisymmetric
- Split-monopole B field
- Force-free
approximation
(Electromagnetically
 dominated)
$\mathbf{J}_{\mathrm{p}} \| \mathbf{B}_{\mathrm{p}} \quad \mathbf{E} \perp \mathbf{B}$
(see also Beskin \& Zheltoukhov 2013)


## BZ process with large BH spin $a$





- Many other FF/MHD numerical studies show BZ process works with large $a$. (e.g. Komissarov 01; McKinney 06; Barkov \& Komissarov 09; Tchekhovskoy+ 11; Ruiz+ 12; Contopoulos+ 13)
- It is proved analytically that $E=0$ cannot be maintained for open field lines (KT \& Takahara 14)

But the detailed mechanism of flux production is still debated

## Vacuum Solution


(Wald 1974; Punsly \& Coroniti 1989)

- Space-time rotation produces E , but not $\mathrm{B}_{\phi}$
- $B_{\phi}$ requires $\mathrm{J}_{\mathrm{p}}$. What drives $\mathrm{J}_{\mathrm{p}}$ ??


## Unipolar induction

$$
\mathbf{E}=-\mathbf{V} \times \mathbf{B}
$$



Matter rotational energy reduced

There is no matter-dominated region in BZ process

(Blandford \& Znajek 1977)

$$
\nabla \cdot \mathbf{S}_{\mathrm{p}}=0
$$

Unipolar induction cannot work. What drives $\mathrm{J}_{\mathrm{p}}$ ??

## Discussions so far

- Membrane paradigm
- Horizon is assumed as a rotating conductor (Thorne et al. 1986; Penna et al. 2013)
- Horizon is causally disconnected (Punsly \& Coroniti 1989)
- Current driving mechanism is unclear
- Negative electromagnetic energy inflow (Lasota+14; Koide \& Baba 14)
- $\mathrm{S}_{\mathrm{p}}=\mathrm{EH}_{\phi} / 4 \pi=\varepsilon \mathrm{v}_{\mathrm{p}}\left(\varepsilon<0, \mathrm{v}_{\mathrm{p}}<0\right)$ ?
- $\varepsilon=\mathrm{T}_{\mathrm{EM}}{ }^{0}{ }_{0}>0$ in Kerr-Schild coordinates (KT \& Takahara 2016)
- MHD picture
- $\mathrm{v}_{\mathrm{p}}=$ particle velocity: $\varepsilon<0$ even outside ergosphere (Takahashi +90)
- Inertial drift current cannot produce all of $S_{p}$
- No negative particle energy seen in MHD simulations (Komissarov 05)


## Current driven in a pair creation gap ?

(Okamoto 2006)


This case could be relevant for the upcoming high-resolution radio observations and the observed high-variability gamma-rays.


M87 radio jet (Hada et al. 2016)


IC310 TeV gamma-rays
(Aleksic et al. 2015, Science)

## 3+1 Electrodynamics

$$
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-\alpha^{2} \mathrm{~d} t^{2}+\gamma_{i j}\left(\beta^{i} \mathrm{~d} t+\mathrm{d} x^{i}\right)\left(\beta^{j} \mathrm{~d} t+\mathrm{d} x^{j}\right)
$$

$E^{\mu}=F^{\mu \nu} \xi_{\nu}, H^{\mu}=-{ }^{*} F^{\mu \nu} \xi_{\nu}$
$D^{\mu}=F^{\mu \nu} n_{\nu}, B^{\mu}=-{ }^{*} F^{\mu \nu} n_{\nu}$
Fields in the coordinate basis
Fields as measured by FIDOs/ZAMOs
$\nabla \cdot \boldsymbol{D}=4 \pi \rho, \quad-\partial_{t} \boldsymbol{D}+\nabla \times \boldsymbol{H}=4 \pi \boldsymbol{J}$,

$$
\begin{aligned}
& \boldsymbol{E}=\alpha \boldsymbol{D}+\boldsymbol{\beta} \times \boldsymbol{B} \\
& \boldsymbol{H}=\alpha \boldsymbol{B}-\boldsymbol{\beta} \times \boldsymbol{D}
\end{aligned}
$$

Electromagnetic energy equation
$\partial_{t}\left[\underset{\text { Energy density }}{\left[\frac{1}{8 \pi}(\boldsymbol{E} \cdot \boldsymbol{D}+\boldsymbol{B} \cdot \boldsymbol{H})\right]}+\nabla \cdot \underset{\text { Poynting flux }}{(\underset{4 \pi}{(\underset{y}{c}} \boldsymbol{E} \times \boldsymbol{H})}=-\boldsymbol{E} \cdot \boldsymbol{J}\right.$,

## General conditions of magnetosphere



Event horizon

- Kerr spacetime with arbitrary spin $a$ (fixed)
- Axisymmetric
- Poloidal $B$ field (with arbitrary shape) threading the ergosphere
- Plasma with sufficient number density

$$
\begin{gathered}
\mathbf{D} \cdot \mathbf{B}=0 \\
(\mathbf{E} \cdot \mathbf{B}=0)
\end{gathered}
$$

## Process toward steady state

First consider a vacuum, and then begin injecting force-free plasma continuously between the two light surfaces


## Causal production of the flux

We derived junction conditions from Maxwell equations, and found current must cross field lines


## Steady State

$$
\begin{aligned}
& \nabla \cdot \mathbf{L}_{p}=-\partial_{t} l-\left(\mathbf{J}_{p} \times \mathbf{B}_{p}\right) \cdot \mathbf{m} \\
& \nabla \cdot \mathbf{S}_{p}=-\partial_{t} e-\mathbf{E} \cdot \mathbf{J}_{p}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \cdot \mathbf{L}_{\mathrm{p}}=0 \\
& \nabla \cdot \mathbf{S}_{\mathrm{p}}=0
\end{aligned}
$$



The boundary (AM/energy source) does not affect the exterior

- No electromagnetic sources are required in the steady state (partly because of no resistivity)
- BH decelerates directly by Poynting flux (different from mechanical Penrose process)


## Origin of Schwarzschild spacetime

The source of Schwarzschild gravitational field is the mass inside the horizon, but the outside of horizon cannot know it


## Conclusion

- The Poynting flux $\mathrm{S}_{\mathrm{p}}=E \mathrm{H}_{\phi} / 4 \pi$ in the $B Z$ process consists of the steady current flows in the electric potential differences
- The current driving ( $\mathrm{S}_{\mathrm{p}}$ production) mechanism can be discussed only in the time-dependent state towards steady state, like the mass source of a BH
- In the steady state, $\mathrm{S}_{\mathrm{p}}$ needs no electromagnetic source. The steady currents can keep flowing in the ideal MHD condition. No gap is needed. The BH rotational energy is reduced directly by $S_{p}$ without being mediated by the negative energies.
- Our argument is based on some assumptions. Detailed plasma simulations are needed to validate it

Back-up slides

## Negative electromagnetic energy?

$$
S_{\mathrm{p}}=e v_{\mathrm{p}}>0 \quad \text { for } e<0 \& v_{\mathrm{p}}<0 \quad \begin{aligned}
& \text { (Lasota et al. 2014; } \\
& \text { Kiode \& Baba 2014) }
\end{aligned}
$$

- Electromagnetic energy density $e$ in the Boyer-Lindquist coordinates can be negative for $\Omega<\Omega_{\mathrm{F}}$

$$
-\alpha T_{t}^{t}=e=\frac{1}{8 \pi \alpha}\left[\alpha^{2} B^{2}+\gamma_{\varphi \varphi}\left(\Omega_{\mathrm{F}}^{2}-\Omega^{2}\right)\left(B^{\theta} B_{\theta}+B^{r} B_{r}\right)\right]
$$

- But $v_{p}$ is not defined. The concept of advection of steady field is ambiguous.
- We showed $e>0$ in the Kerr-Schild

$$
S_{p}=\Omega_{\mathrm{F}} \frac{-H_{\varphi}}{4 \pi}
$$ coordinates

## MHD model

Energy flux density
$S_{\mathrm{p}}=4 \pi \rho c^{2} \Gamma v_{\mathrm{p}} \mathcal{E}>0 \quad$ for $\quad v_{\mathrm{p}}<0, \quad \mathcal{E}<0$


Fig. 1.-Positions of the light surfaces $r=r_{L}^{\text {in }}, r_{L}^{\text {out }}$ (solid lines) and the separation point $r=r_{s}$ (broken lines) for a monopole geometry in the equatorial plane with $a=0.8 \mathrm{~m}$. These points are determined by $\Omega_{F}$.

Separation surface may be located outside the ergosphere.
(Komissarov 2009)

- Cross-field (inertial drift) currents cannot produce all of $S_{p}$
- MHD simulations show the steady state without negative particle energy (Komissarov 2005)


## Field lines threading equatorial plane



- $D^{2}>B^{2}$ possible, creating AM flux $\left(H_{\phi}\right)$ \& Poynting flux

$$
\begin{aligned}
& \nabla \cdot \mathbf{L}_{p}=-\left(\mathbf{J}_{p} \times \mathbf{B}_{p}\right) \cdot \mathbf{m} \\
& \nabla \cdot \mathbf{S}_{p}=-\mathbf{E} \cdot \mathbf{J}_{p}
\end{aligned}
$$

- For $D^{2} \sim B^{2}$, particles are strongly accelerated in direction of $-\phi$, obtaining negative energies
- Analogous to the mechanical Penrose process


## Inflow of negative-energy particles



$$
-U_{t}<0, \quad U^{r}<0
$$

$\partial_{r} \sqrt{\gamma}\left(-\alpha \rho_{\mathrm{m}} U_{t} U^{r}\right)=\mathbf{E} \cdot \mathbf{J}_{\mathrm{p}}<0$

## Znajek condition

$$
H_{\varphi}=-\alpha \sqrt{\frac{\gamma_{\varphi \varphi}}{\gamma_{\theta \theta}}} D_{\theta} \quad \text { BL coordinates }
$$

- Ohm's law for the current flowing on the membrane (Thorne et al. 1986 "Membrane Paradigm")
- Rather, it should be interpreted as displacement current (see also Punsly 2008)

$$
\begin{aligned}
H_{\varphi}^{\mathrm{ff}} & =\sqrt{\gamma}\left(D_{\mathrm{ff}}^{\theta}-D_{\mathrm{vac}}^{\theta}\right) V-4 \pi \sqrt{\gamma} \eta^{\theta} \\
V & =\frac{ \pm \alpha}{\sqrt{\gamma_{r r}}} \sqrt{1+\frac{4 \pi \sqrt{\gamma} \eta^{\theta}}{H_{\varphi}^{\mathrm{f}}}}
\end{aligned}
$$

$$
\begin{aligned}
\eta^{\theta} & \rightarrow 0 \\
\alpha D_{\mathrm{vac}}^{\theta} & \rightarrow 0
\end{aligned}
$$

## Resistive FF simulation results

Monopole solution with $\mathrm{a}=0.1$
(Komissarov 2004)



We consider that a small field-aligned electric field may appear in numerical simulations and in reality with small resistivity

## 2-fluid calculations



Figure 1. Radial velocity component for electrons (asterisks) and positrons (points) as a function of the axial distance; $\varepsilon=0.1, \gamma_{i}=10$. The solid line without markers shows the quantity $w_{0}$ determined by equation (25).

(Kojima 2015)

These 2-fluid analyses show the global violation of $\mathbf{E} \cdot \mathbf{B}=0$

## Origin of Electromotive Force

## $\boldsymbol{E}=\alpha \boldsymbol{D}+\boldsymbol{\beta} \times \boldsymbol{B}$,

If $E=0, H_{\phi}=\alpha B_{\phi}=0$ (No ang. mom. or Poynting flux) along a field line,

$$
\mathbf{D}=-\frac{1}{\alpha} \beta \times \mathbf{B}_{p} \quad \Rightarrow D^{2}>B^{2} \text { for } \underset{\text { (in the ergosphere) }}{\alpha^{2}<\beta^{2}}
$$

Then the force-free is violated, and the strong $D$ field drives $J_{p}$ across $B_{p}\left(H_{\phi} \neq 0\right)$, weakening $D(E \neq 0)$.

The origin of the electromotive force is ascribed to the ergosphere.

## Blandford \& Znajek (1977)

- Kerr space-time
- Steady, axisymmetric
- Slowly rotating BH

$$
a=\frac{J}{M r_{g} c} \ll 1
$$

- Split-monopole B field

$$
B^{r} \sqrt{\gamma}=\mathrm{const}
$$

- Force-free approximation (Electromagnetically dom.)

$$
H_{\varphi}=\mathrm{const} .
$$

Condition at infinity $H_{\varphi}=-2 \pi \Omega_{\mathrm{F}} B^{r} \sqrt{\gamma} \sin \theta$


$$
\mathbf{E}=-\Omega_{\mathrm{F}} \mathbf{e}_{\varphi} \times \mathbf{B}
$$

$$
\Omega_{\mathrm{F}}=\Omega_{\mathrm{H}} / 2+O\left(a^{3}\right)
$$

## Promising Scenario



Consistent with the radio data of M87 jet (e.g. Asada+14; Kino+15)

- Energy injection into dilute region above $\mathrm{BH} \rightarrow$ Relativistic speed
- Steady extraction of BH rotational energy (Blandford \& Znajek 1977) $\rightarrow$ Poynting-dom jet
- Origin of jet matter debated (see KT \& Takahara 2012)
- Matter acceleration by Lorentz force
- Collimation by external pressure (many literatures; see Lyubarsky 2009)

