

Thermal Lens Spectrometry: Theory and Applications

Mladen Franko University of Nova Gorica

INTERNATIONAL SCHOOL OF QUANTUM ELECTRONICS -62nd Course **FRICE - SICILY: October 6th -12th 2018**

Outline

- 1. Basics of TLS spectrometry and comparison to UV-Vis spectrometry
- 2. Principles of collimated PB and multi-pass TLS instruments
- 3. Novel tunable TLS spectrometers
- 4. Limitations of multi-pass instruments
 - 1. Linearity range
 - 2. Effects of blank
- 5. Applications

Basics of thermal lens effect

- During non-radiative relaxation of excited species temperature in the sample increases (10⁻⁴ 10⁻³ K)
- a temperature gradient is generated with maximum temperature at the axis of the excitation beam
- the resulting refractive index gradient acts as a lens (mostly: dn/dT < 0, diverging lens)
- laser beam is defocused (single beam or pump/probe configuration)
- beam radius and its intensity at the beam axis changes
- relative change in the beam intensity is proportional to the absorbed power of the excitation beam.

TLS effect is time dependent - signal forms

• Absorbance (concentration), Power of excitation beam (I_0 , usually denoted as P) $I = I_0 10^{-A}$ $I = I_0 e^{-2.303A}$ $e^{A} = 1 + \frac{A}{11} + \frac{A^{2}}{21} + \frac{A^{3}}{21} + \dots$ $\frac{I}{I_0} = 1 - \frac{2.303A}{1!} + \frac{2.303^2A^2}{2!} - \frac{2.303^3A^3}{3!} + \dots$ $\frac{I-I_0}{I_0} = -\frac{2.303A}{1!} + \frac{2.303^2A^2}{2!} - \frac{2.303^3A^3}{3!} + \dots$

Absorbed power is linearly proportional to absorbance only for small A (< 0.1) !!!

- Optothermal parameters of sample/medium

 Thermal conductivity (k), temperature
 coefficient of refractive index (dn/dT)
- Probe beam wavelength (λ) $\Theta = -\frac{2.303PA(\frac{dn}{dT})}{\lambda k}$
- Beam geometry factors: probe and pump beam radii (w_p , w_e), position of sample (z)

$$m = \left(\frac{w_p}{w_e}\right)^2, V = \frac{Z_1}{Z_c} + \frac{Z_c}{Z_2} \left[1 + \left(\frac{Z_1}{Z_c}\right)^2\right], \ Z_c = \frac{\pi w_{0p^2}}{\lambda}$$

TLS experiment

Mathematical description of TLS effect/signal

TL causes a phase shift in propagation of probe beam

$$\begin{split} \Delta \Phi(r, z, t) &= -\frac{\Theta}{t_c(z)} \int_0^t \frac{dt'}{1 + 2t'/t_c(z)} \left[1 - \exp\left(-\frac{2r^2}{\omega_e^{-2}(z)(1 + 2t'/t_c(z))}\right) \right] \\ I(t) &= \\ &= I(0) \left\{ \left[1 - \frac{\Theta}{2} \arctan\left(\frac{2mV}{\left[(1 + 2m)^2 + V^2\right]\left(\frac{t_c}{t}\right) + 1 + 2m + V^2\right)}\right]^2 \right\} \\ &+ \left[\frac{\Theta}{4} \ln\left(\frac{\left[1 + 2m/(1 + t/t_c)\right]^2 + V^2}{(1 + 2m)^2 + V^2}\right) \right]^2 \right\} \end{split}$$

Maximal TL signal

• *arctan* is maximum $(\pi/2)$ when argument approaches ∞ : highly collimated probe beam (no bimodal behavior)

Blank subtraction by differential TLS measurements

E - Enhancement factor in TLS

For spectrophotometry: $\frac{I_0 - I}{I_0} = \frac{2.303A}{1!}$ therefore: for m = 1 and $z_1 = z_c \sqrt{3}$: and for max. signal: $E = -\frac{P(\frac{dn}{dT})0.534}{\lambda k}$ $E_{coll} = -\frac{P(\frac{dn}{dT})\pi}{2\lambda k}$

Solvent	$-dn/dT / 10^{-4} \mathrm{K}^{-1}$	$k / W m^{-1} K^{-1}$	$E / 10^{-3} \mathrm{W}^{-1}$
H ₂ O	0.91	0.607	0.12 (0.35)
CCl ₄	5.9	0.103	4.74 (13.9)
acetone	5.42	0.190	2.36 (6.94)

E is calculated for $\lambda = 632.8$ nm (*E*_{coll} is given in parentheses)

Adjustable beam size/position TLM

TLM detection in microfluidic systems

Efficiency of TLM for different sample thicknesses

Multi-pass TLS instrument

$$\Delta \Phi(r, z, t) = -n \frac{\Theta}{t_c(z)} \int_0^t \frac{dt'}{1 + 2t'/t_c(z)} \left[1 - \exp\left(-\frac{2r^2}{\omega_e^2(z)(1 + 2t'/t_c(z))}\right) \right]$$

Milti-pass TLS measurements of Fe(II)-1,10 phenanthroline

Blank effects

This leads to 25-40% errors in 10-pass configuration for large θ . e.g. $\theta_b = 0.03$ for $\theta_b = 0.01$ error is between 8 and 15% (A_{max}= 0.05/cm) the effect increases with increasing concentration of analyte. It can be neglected for single and dual pass configurations.

TLS - advantages

- High sensitivity
 - signal proportional to excitation laser power
 - absorbances as low as 10⁻⁷ can be measured
- Enables On-line detection
 - fast response of TLS signal (on µs to ms time scale)
- Capability of measuring small samples
 - sub-pL volumes can be probed
 - detection in microfluidic systems

TLS – drawbacks and solutions

- Sensitivity still needs improvement
 - Higher laser power? (photo-labile compounds)
 - Modify solvents
- Limited availability of laser sources
 - Coloring reactions, indirect detection
- Poor selectivity
 - Single wavelength measurements
 - Coupling to separation techniques (HPLC, IC, CE)
- Photodegradation
 - Measure in flowing systems

Tunable Multi-pass TL

spectrometer

 $P_e = 7 - 17 \text{ mW}$, 10 nm FWHM, 4-pass configuration

Recording TLS spectra with a multi-pass TL spectrometer

550

TLS spectra of luminescent

nanogold materials

Determination of microcystin by PP2A inhibition assay

Colorimetric reaction catalyzed by PP Reaction inhibited by cyanotoxin Methyl-dehydro-alanine Iso-glutamic acid (Mdha) p-nitrophenol (Glu) phosphatase CH3 O COOH н OH OH Alanine H₃C (colorless) OH CH2 (Ala) light н н OCH₂ vellow H H₂C p-nitrophenilphosphate CH₃ HN H₃C ĊH₃ CH3 Ĥ Ή Ô 0 3-amino-9-methoxy-2,6,8-trimethyl-COOH Leucine 10-phenyl-4.6-dienoic acid (Leu) p-nitrophenolate Methyl aspartic acid Objectiv Lens (MeAsp) ×/NA0.4 Sample > Waste Reagent To Objective Interference filter 200 Pinhole Mechanical Photodetector chopper He-Ne 95 10 **Argon ion laser** SR830 -45° 1.03 kH

TLM-PP2A inhibition assay

Enzyme consumption: 0.5 μL per injection Detection limit: ~ 80ng/L -12 times lower below the WHO limit for drinking water -8 times faster than batch mode assay

Transport phenomena in multiphase microflows - TLM Based Validation of Models

Martin Lubej,^a Uroš Novak,^a Mingqiang Liu,^b Mitja Martelanc,^b Mladen Franko^b and Igor Plazl^{*a}

flow in

Detection and utilization of virus-like proteins and pseudovirions

HPV is a cause of cervical cancer. By using HPV antibodies one can detect HPV. By using HPV-VLPs one can detect HPV antibodies and past or current infection

Calibration curves for HPV-16 antibodies

Nanobeads

μFIA-TLM

(ng/mL)

 6.8 ± 0.9

8 ± 1

 5.4 ± 0.2

 3.8 ± 0.6

First detection and modulation of bilirubin in vascular endothelial cels

Accepted: 14 June 2016

Acknowledgements

- Dorota Korte
- Mitja Martelanc
- Mingqiang Liu
- Tatjana Radovanović
- -Vukajlović
- Lea Goljat
- Funding: ARRS,
- Humberto Cabrera
- Lovro Žiberna
- Sabina Passamonti
- Matjaž Klemenc

- S.E. Bialkowski, *Photothermal Spectroscopy Methods for Chemical Analysis*, John Whiley & Sons, Inc., New York, 1996.
- C.D. Tran , M. Franko, "*Thermal Lens Spectroscopy*" in: Encyclopedia of Analytical Chemistry, (Ed. R.A. Meyers), John Wiley: Chichester., 2010. DOI: 9780470027318.
- M. Franko, *"Bioanalytical Applications of TLS"*, in: Thermal wave physics and related photothermal techniques: Basic principles and recent developments, ISBN 978-81-7895-401-1 (Ed. E. Marin), Research Signpost Press, 2009
- M. Franko, Thermal Lens Spectrometric Detection in Flow Injection Analysis and Separation Techniques, *Appl. Spectrosc. Rev.* **43**, 2008, 358-388.

- Kitamori, T., Tokeshi, M., Hibara, A. and Sato, K., Thermal lens microscopy and microchip chemistry. *Anal. Chem.*, 76, 2004, 52A-60A.
- M. Franko, C.D. Tran, Analytical Thermal Lens Instrumentation, *Rev. Sci. Instrum.* **67**, 1996, 1-18.
- Liu M., Franko M.: Progress in thermal lens spectrometry and its application in microscale analytical devices, *Crit. Rev. Anal. Chem.* 44, 2014, 328-353.